STK672-440AN-E

Thick-Film Hybrid IC 2-phase Stepper Motor Driver

ON Semiconductor ${ }^{\text {® }}$
http:Ilonsemi.com

Overview

The STK672-440AN-E is a hybrid IC for use as a unipolar, 2-phase stepper motor driver with PWM current control.

Applications

- Office photocopiers, printers, etc.

Features

- Built-in overcurrent detection function, overheat detection function (output current OFF).
- FAULT1 signal (active low) is output when overcurrent or overheat is detected.

The FAULT2 signal is used to output the result of activation of protection circuit detection at 2 levels.

- Built-in power on reset function.
- A micro-step sine wave-driven driver can be activated merely by inputting an external clock.
- External pins can be used to select 2, 1-2 (including pseudo-micro), W1-2, 2 W1-2, or 4W1-2 excitation.
- The switch timing of the 4-phase distributor can be switched by setting an external pin (MODE3) to detect either the rise and fall, or rise only, of CLOCK input.
- Phase is maintained even when the excitation mode is switched. Rotational direction switching function.
- Supports schmitt input for 2.5 V high level input.
- Incorporating a current detection resistor (0.122Ω : resistor tolerance $\pm 2 \%$), motor current can be set using two external resistors.
- The ENABLE pin can be used to cut output current while maintaining the excitation mode.
- With a wide current setting range, power consumption can be reduced during standby.
- No motor sound is generated during hold mode due to external excitation current control.
- PWM operation is separately excited system. As for PWM phase the constant current control which shifts the phase of Ach Bch.
- Supports compatible pins with STK672-442AN/-430AN/-432AN-E.

Specifications

Absolute Maximum Ratings at $\mathrm{Tc}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	Vcc max	No signal	52	V
Maximum supply voltage 2	VDD max	No signal	-0.3 to 6.0	V
Input voltage	Vin max	Logic input pins	-0.3 to 6.0	V
Output current 1	IOP max	$10 \mu \mathrm{~s} 1$ pulse (resistance load)	20	A
Output current 2	IOH max	VDD = 5V, CLOCK $\geq 200 \mathrm{~Hz}$	3.5	A
Output current 3	IOF max	16 pin Output current	10	mA
Allowable power dissipation 1	PdMF max	With an arbitrarily large heat sink. Per MOSFET	8.3	W
Allowable power dissipation 2	PdPK max	No heat sink	3.1	W
Operating substrate temperature	Tcmax		105	${ }^{\circ} \mathrm{C}$
Junction temperature	Tjmax		150	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to 125	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Ranges at $\mathrm{Tc}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	unit
Operating supply voltage 1	V_{CC}	With signals applied	0 to 42	V
Operating supply voltage 2	$V_{\text {DD }}$	With signals applied	5 $\pm 5 \%$	V
Input high voltage	V_{IH}	Pins 10, 11, 12, 13, 14, 15, 17, $\mathrm{V}_{\mathrm{DD}}=5 \pm 5 \%$	2.5 to $V_{\text {DD }}$	V
Input low voltage	$\mathrm{V}_{\text {IL }}$	Pins 10, 11, 12, 13, 14, 15, 17, $\mathrm{V}_{\mathrm{DD}}=5 \pm 5 \%$	0 to 0.8	V
CLOCK frequency	${ }^{\text {f }}$ CL	Minimum pulse width: at least $10 \mu \mathrm{~s}$	0 to 50	kHz
Output current	${ }^{\mathrm{O}} \mathrm{OH}$	Tc= $105^{\circ} \mathrm{C}, \mathrm{CLOCK} \geq 200 \mathrm{~Hz}$	3.0	A
Recommended operating substrate temperature	Tc	No condensation	0 to 105	${ }^{\circ} \mathrm{C}$
Recommended Vref range	Vref	Tc $=105^{\circ} \mathrm{C}$	0.2 to 1.8	V

Electrical Characteristics at $\mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} * 1$

Parameter					Symbol	Conditions	min	typ	max	unit			
$\mathrm{V}_{\text {DD }}$ supply current					ICCO	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, ENABLE $=$ Low		5.7	7.0	mA			
Output average current *2					loave	$\mathrm{R} / \mathrm{L}=1 \Omega / 0.62 \mathrm{mH}$ in each phase	0.27	0.32	0.37	A			
FET diode forward voltage					Vdf	$\mathrm{If}=1 \mathrm{~A}\left(\mathrm{R}_{\mathrm{L}}=23 \Omega\right)$		1	1.6	V			
Output saturation voltage					Vsat	$\mathrm{R}_{\mathrm{L}}=23 \Omega$		0.25	0.38	V			
Control input pin		Input voltage			$\mathrm{V}_{\text {IH }}$	Pins 10, 11, 12, 13, 14, 15, 17	2.5		V_{DD}	V			
		$\mathrm{V}_{\text {IL }}$	Pins 10, 11, 12, 13, 14, 15, 17	-0.3		0.8	V						
		5 V level input current	IILH	Pins 10, 11, 12, 13, 14, 15, 17=5V		50	75	$\mu \mathrm{A}$					
		GND level input current	IILL	Pins 10, 11, 12, 13, 14, 15, 17=GND			10	$\mu \mathrm{A}$					
Vref input bias current					I_{IB}	Pin $19=1.0 \mathrm{~V}$		10	15	$\mu \mathrm{A}$			
FAULT1 pin					Output low voltage			$\mathrm{V}_{\text {OLF }}$	Pin 16 ($\mathrm{I}=5 \mathrm{~mA}$)		0.25	0.5	V
		5 V level leakage current			IILF	Pin $16=5 \mathrm{~V}$			10	$\mu \mathrm{A}$			
FAULT2 pin		Overcurrent detection output voltage			$\mathrm{V}_{\mathrm{OF}}{ }^{2}$	Pin 8 (when all protection functions have been activated)	2.4	2.5	2.6				
		Overheat detection output voltage			$\mathrm{V}_{\mathrm{OF}}{ }^{3}$		3.1	3.3	3.5				
Overheat detection temperature					TSD	Design guarantee		144		${ }^{\circ} \mathrm{C}$			
PWM frequency					fc		41	48	55	kHz			
Drain-source cut-off current					IDSS	$\mathrm{V}_{\mathrm{DS}}=100 \mathrm{~V}$, Pins 2, 6, 9, 18=GND			1	$\mu \mathrm{A}$			
	4W1-2	2W1-2	W1-2	1-2	Vref *3	$\theta=15 / 16,16 / 16$		100		\%			
	4W1-2	2W1-2				$\theta=14 / 16$		97					
	4W1-2					$\theta=13 / 16$		95					
	4W1-2	2W1-2	W1-2			$\theta=12 / 16$		93					
	4W1-2					$\theta=11 / 16$		87					
	4W1-2	2W1-2				$\theta=10 / 16$		83					
	4W1-2					$\theta=9 / 16$		77					
	4W1-2	2W1-2	W1-2	1-2		$\theta=8 / 16$		71					
	4W1-2					$\theta=7 / 16$		64					
	4W1-2	2W1-2				$\theta=6 / 16$		55					
	4W1-2					$\theta=5 / 16$		47					
	4W1-2	2W1-2	W1-2			$\theta=4 / 16$		40					
	4W1-2					$\theta=3 / 16$		30					
	4W1-2	2W1-2				$\theta=2 / 16$		20					
	4W1-2					$\theta=1 / 16$		11					
	2							100					

Notes

*1: A fixed-voltage power supply must be used.
*2: The value for Ioave assumes that the lead frame of the product is soldered to the mounting circuit board.
*3: The values given for Vref are design targets, no measurement is performed.

Notes

- The current range given above represents conditions when output voltage is not in the avalanche state.
- If the output voltage is in the avalanche state, see the allowable avalanche energy for STK672-4** series hybrid ICs given in a separate document.
- The operating substrate temperature, Tc , given above is measured while the motor is operating.

Because Tc varies depending on the ambient temperature, Ta , the value of IOH , and the continuous or intermittent operation of I_{OH}, always verify this value using an actual set.

- The Tc temperature should be checked in the center of the metal surface of the product package.

Block Diagram

Measurement Circuit

(The terminal which is not appointed is open. The measurement circuit of STK672-440AN-E is the same as STK672-442AN-E.)

- Vsat
- IIH,IIL,IIB,ILF

- Vdf

Ioave measurement : Set switch SW2 in the setting SW1 to 'b'.
fc measurement : Set switch SW3 in the setting SW1 to ' a '.
Icco measurement : Set ENABLE low.
VOLF measurement : Set SW4'on'in the Ioave measurement condition.

Sample Application Circuit

(2W1-2 Phase Excitation Drive /micro stepping operation)

Precautions

[GND wiring]

- To reduce noise on the $5 \mathrm{~V} / 24 \mathrm{~V}$ system, be sure to place the GND of C 01 in the circuit given above as close as possible to Pin 2 and Pin 6 of the hybrid IC.
In addition, in order to set the current accurately, the GND side of RO2 of Vref must be connected to the shared ground terminal used by the Pin 18 (S.G) GND, P.G1 and P.G2.

[Input pins]

- If V_{DD} is being applied, use care that each input pin does not apply a negative voltage less than -0.3 V to S . GND, Pin 18. Measures must also be taken so that a voltage equal to or greater than V_{DD} is not input.
- High voltage input other than $V_{D D}$, MOI, FAULT1, and FAULT2 is 2.5 V .
- Pull-up resistors are not connected to input pins. Pull-down resistors are attached. When controlling the input to the hybrid IC with the open collector type, be sure to connect a pull-up resistor (1 to 20k Ω). Be sure to use a device (0.8 V or less, low level, when $\mathrm{IOL}=5 \mathrm{~mA}$) for the open collector driver at this time that has an output voltage specification such that voltage is pulled to less than 0.8 V at low level.
- When using the power on reset function built into the hybrid IC, be sure to directly connect Pin 14 to VDD.
- We recommend attaching a $1,000 \mathrm{pF}$ capacitor to each input to prevent malfunction during high-impedance input. Be sure to connect the capacitor near the hybrid IC, between Pin 18 (S, G).
When input is fixed low, directly connect to Pin 18 . When input is fixed high, directly connect to VDD.
[Current setting Vref]
Considering the specifications for the Vref input bias current IIB, we recommend a value $1 \mathrm{k} \Omega$ or less for R 02 .
If the motor current is temporarily reduced, the circuit given below is recommended.
The variable voltage range of Vref input is 0.2 to 1.8 V .

[Setting the motor current]
The motor current, IOH , is set using the Pin 19 voltage, Vref, of the hybrid IC.
Equations related to IOH and Vref are given below.

$$
\begin{align*}
& \mathrm{Vref} \approx(\mathrm{RO} 2 \div(\mathrm{RO} 2+\mathrm{RO} 1)) \times \mathrm{V}_{\mathrm{DD}}(5 \mathrm{~V}) \tag{1}\\
& \mathrm{IOH} \approx(\mathrm{Vref} \div 4.9) \div \mathrm{Rs} \cdots \cdots \cdots \cdots \cdots \cdots
\end{align*}
$$

The value of 4.9 in Equation (2) above represents the Vref voltage as divided by a circuit inside the control IC.
Rs: 0.122Ω (Current detection resistor inside the hybrid IC)

[Smoke Emission Precuations]
If Pin 18 (S.G terminal) is attached to the board without using solder, overcurrent may flow into the MOSFET at $\mathrm{V}_{\mathrm{CC}} \mathrm{ON}$ (24 V ON), causing the STK672-440AN-E to emit smoke because 5 V circuits cannot be controlled.

Function Table

M2	0	0	1	1	CLOCK Edge Timing for Phase Switching
M3	0	1	0	1	
1	M1	2-phase excitation selection	1-2-phase excitation $\left(\mathrm{IOH}^{\prime}=100 \%\right)$	W1-2 phase excitation	$2 \mathrm{~W} 1-2$ phase excitation
0	1-2 phase excitation $\left(\mathrm{IOH}^{2}=100 \%, 71 \%\right)$	$\mathrm{W} 1-2$ phase excitation	$2 \mathrm{~W} 1-2$ phase excitation	$4 \mathrm{~W} 1-2$ phase excitation	CLOCK both edges

$\mathrm{IOH}^{=}=100 \%$ results in the Vref voltage setting, IOH .
During 1-2 phase excitation, the hybrid IC operates at a current setting of $\mathrm{IOH}=100 \%$ when the CLOCK signal rises. Conversely, pseudo micro current control is performed to control current at $\mathrm{IOH}^{=100 \%}$ or 71% at both edges of the CLOCK signal.

CWB pin

Forward/CW	0
Reverse/CCW	1

ENABLE•RESETB pin

ENABLE	Motor current cut: Low
RESETB	Active Low

Timing Charts

2-phase excitation timing charts (M3=1)

W1-2-phase excitation timing charts (M3=1)

1-2-phase excitation timing charts (M3=1)

2W1-2-phase excitation timing charts (M3=1)

1-2-phase excitation timing charts ($\mathrm{M} 3=0$)

2W1-2-phase excitation timing charts ($\mathrm{M} 3=0$)

W1-2-phase excitation timing charts (M3=0)

4W1-2-phase excitation timing charts (M3=0)

Package Dimensions

unit : mm
SIP19 29.2x14.4
CASE 127CF
ISSUE O

STK672-440AN-E Technical data

1. Input Pins and Functional Overview
2. STK672-440AN-E over current detection,thermal shutdown detection.
3. STK672-440AN-E Allowable Avalanche Energy
4. STK672-440AN-E Internal Loss Calculation
5. Thermal Design
6. Package Power Loss PdPK Derating Curve for the Ambient Temperature Ta
7. Other usage notes

1.I/O Pins and Functions of the Control Block

[Pin description]

HIC pin	Pin Name	
7	MOI	Function
10	MODE1	Output pin for the excitation monitor
11	MODE2	
17	MODE3	
12	CLOCK	Sets the direction of rotation of the motor axis
13	CWB	System reset
14	RESETB	Motor current OFF
15	ENABLE	Overcurrent/over-heat detection output 16\quad FAULT1
8	FAULT2	
19	Vref	

Description of each pin

1-1.[CLOCK (Phase switching clock)]

Input frequency: DC-20kHz (when using both edges) or DC-50kHz (when using one edge)
Minimum pulse width: $20 \mu \mathrm{~s}$ (when using both edges) or $10 \mu \mathrm{~s}$ (when using one edge)
Pulse width duty: 40% to 50% (when using both edges)
Both edge, single edge operation
M3:1 The excitation phase moves one step at a time at the rising edge of the CLOCK pulse.
M3:0 The excitation phase moves alternately one step at a time at the rising and falling edges of the CLOCK pulse.

1-2.[CWB (Motor direction setting)]

When $\mathrm{CWB}=0$: The motor rotates in the clockwise direction.
When $\mathrm{CWB}=1$: The motor rotates in the counterclockwise direction.
Do not allow CWB input to vary during the 7μ s interval before and after the rising and falling edges of CLOCK input.
1-3. [ENABLE (Forcible OFF control of excitation drive output A, AB, B, and BB, and selecting operation/hold status inside the HIC)]
ENABLE=1: Normal operation
When ENABLE=0: Motor current goes OFF, and excitation drive output is forcibly turned OFF.
The system clock inside the HIC stops at this time, with no effect on the HIC even if input pins other than RESET input vary. In addition, since current does not flow to the motor, the motor shaft becomes free.
If the CLOCK signal used for motor rotation suddenly stops, the motor shaft may advance beyond the control position due to inertia. A SLOW DOWN setting where the CLOCK cycle gradually decreases is required in order to stop at the control position.

1-4. [MODE1, MODE2, and MODE3 (Selecting the excitation mode, and selecting one edge or both edges of the CLOCK)]
Excitation select mode terminal (See the sample application circuit for excitation mode selection), selecting the CLOCK input edge(s).
Mode setting active timing
Do not change the mode within 7μ s of the input rising or falling edge of the CLOCK signal.

1-5.[RESETB (System-wide reset)]

The reset signal is formed by the power-on reset function built into the HIC and the RESETB terminal.
When activating the internal circuits of the HIC using the power-on reset signal within the HIC, be sure to connect Pin 14 of the HIC to V_{DD}.

1-6.[Vref (Voltage setting to be used for the current setting reference)]
Pin type: Analog input configuration and input pull-down resistance $100 \mathrm{k} \Omega$.
Input voltage is in the voltage range of 0.2 V to 1.8 V .

1-7. [Input timing]

The control IC of the driver is equipped with a power on reset function capable of initializing internal IC operations when power is supplied. A 4 V typ setting is used for power on reset. Because the specification for the MOSFET gate voltage is $5 \mathrm{~V} \pm 5 \%$, conduction of current to output at the time of power on reset adds electromotive stress to the MOSFET due to lack of gate voltage. To prevent electromotive stress, be sure to set ENABLE=Low while VDD, which is outside the operating supply voltage, is less than 4.75 V .
In addition, if the RESETB terminal is used to initialize output timing, be sure to allow at least $10 \mu \mathrm{~s}$ until CLOCK input.

ENABLE, CLOCK, and RESETB Signals Input Timing
1-8. [Configuration of control block I/O pins]
$<$ Configuration of the MODE1, MODE2, MODE3, CLOCK, $\quad<$ Configuration of the FAULT2 pin> CWB, ENABLE, and RESETB input pins>

(The buffer has an open drain configuration.)

The input pins of this driver all use Schmitt input. Typical specifications at $\mathrm{Tc}=25^{\circ} \mathrm{C}$ are given below. Hysteresis voltage is 0.3 V (VIHa-VILa).

Input voltage specifications are as follows.
$\mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{Vmin}$
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max
<Configuration of the Vref input pin>

<Configuration of the FAULT1 output pin>

<FAULT1, FAULT2 output>
FAULT1 Output
FAULT1 is an open drain output. It outputs low level when overcurrent, or overheat is detected.
FAULT2 output
Output is resistance divided (2 levels) and the type of abnormality detected is converted to the corresponding output voltage.

- Overcurrent: 2.5 V (typ)
- Overheat: 3.3 V (typ)

Abnormality detection can be released by a RESETB operation or turning VDD voltage on/off.
1-9. [MOI output]
The output frequency of this excitation monitor pin varies depending on the excitation mode. For output operations, see the timing chart.

2. Overcurrent detection, overheat detection functions

Each detection function operates using a latch system and turns output off. Because a RESET signal is required to restore output operations, once the power supply, V_{DD}, is turned off, you must either again apply power on reset with $\mathrm{V}_{\mathrm{DD}} \mathrm{ON}$ or apply a RESETB $=$ High \rightarrow Low \rightarrow High signal.

2-1.[Overcurrent detection]

This hybrid IC is equipped with a function for detecting overcurrent that arises when the motor burns out or when there is a short between the motor terminals.
Overcurrent detection occurs at 3.4A typ with the STK672-430AN/-432AN-E, and 5.0A typ with the STK672-440AN-E/442AN-E.

Current when motor terminals are shorted

Overcurrent detection begins after an interval of no detection (a dead time of $1.25 \mu \mathrm{~s}$ typ) during the initial ringing part during PWM operations. The no detection interval is a period of time where overcurrent is not detected even if the current exceeds IOH.

2-2. [Overheat detection]

Rather than directly detecting the temperature of the semiconductor device, overheat detection detects the temperature of the aluminum substrate ($144^{\circ} \mathrm{C}$ typ).
Within the allowed operating range recommended in the specification manual, if a heat sink attached for the purpose of reducing the operating substrate temperature, Tc , comes loose, the semiconductor can operate without breaking. However, we cannot guarantee operations without breaking in the case of operations other than those recommended, such as operations at a current exceeding IOH max that occurs before overcurrent detection is activated.

3. Allowable Avalanche Energy Value

(1) Allowable Range in Avalanche Mode

When driving a 2-phase stepping motor with constant current chopping using an STK672-4** Series hybrid IC, the waveforms shown in Figure 1 below result for the output current, I_{D}, and voltage, VDS.

Figure 1 Output Current, ID, and Voltage, VDS, Waveforms 1 of the STK672-4** Series when Driving a 2-Phase Stepper Motor with Constant Current Chopping

When operations of the MOSFET built into STK672-4** Series ICs is turned off for constant current chopping, the ID signal falls like the waveform shown in the figure above. At this time, the output voltage, V_{DS}, suddenly rises due to electromagnetic induction generated by the motor coil.

In the case of voltage that rises suddenly, voltage is restricted by the MOSFET VDSS. Voltage restriction by VDSS results in a MOSFET avalanche. During avalanche operations, ID flows and the instantaneous energy at this time, EAVL1, is represented by Equation (3-1).

```
EAVL1 }=\mp@subsup{V}{\mathrm{ DSS }}{}\times\textrm{IAVL}\times0.5\times\textrm{tAVL
VDSS: V units, IAVL: A units, tAVL: sec units
The coefficient 0.5 in Equation (3-1) is a constant required to convert the IAVL triangle wave to a square wave.
```

During STK672-4** Series operations, the waveforms in the figure above repeat due to the constant current chopping operation. The allowable avalanche energy, EAVL, is therefore represented by Equation (3-2) used to find the average power loss, PAVL, during avalanche mode multiplied by the chopping frequency in Equation (3-1).

$$
\begin{aligned}
& \text { PAVL=}=V D S S \times I A V L \times 0.5 \times t A V L \times f c ~---(3-2) ~ \\
&\text { fc: } \mathrm{Hz} \text { units (fc is set to the PWM frequency of } 50 \mathrm{kHz} .)
\end{aligned}
$$

For VDSS, IAVL, and tAVL, be sure to actually operate the STK672-4** Series and substitute values when operations are observed using an oscilloscope.

Ex. If $\mathrm{V}_{\mathrm{DSS}}=110 \mathrm{~V}, \mathrm{IAVL}=1 \mathrm{~A}, \mathrm{tAVL}=0.2 \mu \mathrm{~s}$, the result is:
PAVL $=110 \times 1 \times 0.5 \times 0.2 \times 10^{-6} \times 50 \times 10^{3}=0.55 \mathrm{~W}$
VDSS $=110 \mathrm{~V}$ is a value actually measured using an oscilloscope.
The allowable loss range for the allowable avalanche energy value, PAVL, is shown in the graph in Figure 3. When examining the avalanche energy, be sure to actually drive a motor and observe the $\mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{DSS}}$, and tAVL waveforms during operation, and then check that the result of calculating Equation (3-2) falls within the allowable range for avalanche operations.
(2) ID and VDSS Operating Waveforms in Non-avalanche Mode

Although the waveforms during avalanche mode are given in Figure 1, sometimes an avalanche does not result during actual operations.
Factors causing avalanche are listed below.

- Poor coupling of the motor's phase coils (electromagnetic coupling of A phase and AB phase, B phase and BB phase).
- Increase in the lead inductance of the harness caused by the circuit pattern of the board and motor.
- Increases in VDSS, tAVL, and IAVL in Figure 1 due to an increase in the supply voltage from 24 V to 36 V .

If the factors above are negligible, the waveforms shown in Figure 1 become waveforms without avalanche as shown in Figure 2.
Under operations shown in Figure 2, avalanche does not occur and there is no need to consider the allowable loss range of PAVL shown in Figure 3.

Figure 2 Output Current, I_{D}, and Voltage, VDS, Waveforms 2 of the STK672-4** Series when Driving a 2-Phase Stepper Motor with Constant Current Chopping

Figure 3 Allowable Loss Range, PAVL-IOH During STK672-440AN-E Avalanche Operations
PAVL-IOH

Note:

The operating conditions given above represent a loss when driving a 2-phase stepper motor with constant current chopping.
Because it is possible to apply 3 W or more at $\mathrm{IOH}=0 \mathrm{~A}$, be sure to avoid using the MOSFET body diode that is used to drive the motor as a zener diode.

4. Calculating STK672-440AN-E HIC Internal Power Loss

The average internal power loss in each excitation mode of the STK672-440AN-E can be calculated from the following formulas. ${ }^{*}$

4-1. [Each excitation mode]
2-phase excitation mode
2 PdAVex $=2 \times$ Vsat $\times 0.5 \times$ CLOCK $\times \mathrm{IOH}^{\times \mathrm{t} 2} 2+0.5 \times \mathrm{CLOCK} \times \mathrm{IOH} \times(\mathrm{Vsat} \times \mathrm{t} 1+\mathrm{Vdf} \times \mathrm{t} 3)$
1-2 Phase excitation mode
$1-2 \mathrm{PdAVex}=2 \times \mathrm{Vsat} \times 0.25 \times \mathrm{CLOCK} \times \mathrm{IOH} \times \mathrm{t} 2+0.25 \times \mathrm{CLOCK} \times \mathrm{IOH} \times(\mathrm{Vsat} \times \mathrm{t} 1+\mathrm{Vdf} \times \mathrm{t} 3)$
W1-2 Phase excitation mode
W1-2PdAVex $=0.64[2 \times$ Vsat $\times 0.125 \times$ LOCK \times IOH $\times \mathrm{t} 2+0.125 \times$ CLOCK $\times \mathrm{I} O H \times($ Vsat $\times \mathrm{t} 1+\mathrm{Vdf} \times \mathrm{t} 3)]$
2W1-2 Phase excitation mode
$2 \mathrm{~W} 1-2$ PdAVex $=0.64[2 \times \mathrm{Vsat} \times 0.0625 \times \mathrm{CLOCK} \times \mathrm{IOH} \times \mathrm{t} 2+0.0625 \times \mathrm{CLOCK} \times \mathrm{IOH} \times(\mathrm{Vsat} \times \mathrm{t} 1+\mathrm{Vdf} \times \mathrm{t} 3)]$
4W1-2 Phase excitation mode
$4 \mathrm{~W} 1-2 \mathrm{PdAVex}=0.64[2 \times \mathrm{Vsat} \times 0.0625 \times \mathrm{CLOCK} \times \mathrm{IOH} \times \mathrm{t} 2+0.0625 \times \mathrm{CLOCK} \times \mathrm{IOH} \times(\mathrm{Vsat} \times \mathrm{t} 1+\mathrm{Vdf} \times \mathrm{t} 3)]$
Motor hold mode
HoldPdAVex $=2 \times$ Vsat $\times \mathrm{IOH}_{\mathrm{OH}}$
Note: 2-phase 100% conductance is assumed in Equation (4-6).
Vsat: Combined voltage of Ron voltage drop + current detection resistance
Vdf: Combined voltage of the FET body diode + current detection resistance
CLOCK: Input CLOCK (HIC: input frequency at Pin 12)
t 1 , t 2 , and t 3 represent the waveforms shown in the figure below.
t : Time required for the winding current to reach the set current (IOH)
t2: Time in the constant current control (PWM) region
t3: Time from end of phase input signal until inverse current regeneration is complete

Motor COM Current Waveform Model

$$
\begin{align*}
& \mathrm{t} 1=(-\mathrm{L} /(\mathrm{R}+0.25)) \ln \left(1-\left(\left((\mathrm{R}+0.25) / \mathrm{V}_{\mathrm{CC}}\right) \times \mathrm{IOH}\right)\right) \tag{4-7}\\
& \mathrm{t} 3=(-\mathrm{L} / \mathrm{R}) \ln \left(\left(\mathrm{V}_{\mathrm{CC}}+0.25\right) /\left(\mathrm{IOH} \times \mathrm{R}+\mathrm{V}_{\mathrm{CC}}+0.25\right)\right) \tag{4-8}\\
& \mathrm{V}_{\mathrm{CC}}: \text { Motor supply voltage }(\mathrm{V}) \\
& \text { L: Motor inductance }(\mathrm{H}) \\
& \mathrm{R}: \text { Motor winding resistance }(\Omega) \\
& \mathrm{I}_{\mathrm{OH}}: \text { Motor set output current crest value (A) }
\end{align*}
$$

Fixed current control time, t2, for each excitation mode
(1) 2-phase excitation
$\mathrm{t} 2=(2 \div \mathrm{CLOCK})-(\mathrm{t} 1+\mathrm{t} 3)$
(2) 1-2 phase excitation
$\mathrm{t} 2=(3 \div \mathrm{CLOCK})-\mathrm{t} 1$
(3) W1-2 phase excitation
$\mathrm{t} 2=(7 \div \mathrm{CLOCK})-\mathrm{t} 1$
(4) 2W1-2 phase excitation (and 4W1-2 phase excitation)
$\mathrm{t} 2=(15 \div$ CLOCK $)-\mathrm{t} 1$

For the values of Vsat and Vdf, be sure to substitute from Vsat vs IOH and Vdf vs IOH at the setting current value IOH. (See pages to follow)
Then, determine if a heat sink is necessary by comparing with the $\Delta \mathrm{Tc}$ vs Pd graph (see next page) based on the calculated average output loss, HIC.
For heat sink design, be sure to see ' 5 . Thermal Design'.
The HIC average power, PdAVex described above, represents loss when not in avalanche mode. To add the loss in avalanche mode, be sure to add PAVL $(4-13,14)$ using the formula (3-2) for average power loss , PAVL, for STK672-4** avalanche mode, described below to PdAVex described above.
When using this IC without a fin, always check for temperature increases in the set, because the HIC substrate temperature, Tc , varies due to effects of convection around the HIC.

4-2. [Calculating the average power loss, PAVL, during avalanche mode]
The allowable avalanche energy, EAVL, during fixed current chopping operation is represented by Equation (3-2) used to find the average power loss, PAVL, during avalanche mode that is calculated by multiplying Equation (3-1) by the chopping frequency.
$\mathrm{PAVL}=\mathrm{V}_{\mathrm{DSS}} \times \mathrm{IAVL} \times 0.5 \times \mathrm{tAVL} \times \mathrm{fc}$
$\mathrm{fc}: \mathrm{Hz}$ units (fc is set to the PWM frequency of 50 kHz .)
Be sure to actually operate an STK672-4** series and substitute values found when observing operations on an oscilloscope for VDSS, IAVL, and tAVL.

The sum of PAVL values for each excitation mode is multiplied by the constants given below and added to the average internal HIC loss equation, except in the case of 2-phase excitation.
$1-2$ excitation mode and higher: PAVL(1) $=0.7 \times$ PAVL
During 2-phase excitation and motor hold: PAVL(1) $=1 \times$ PAVL (4-14)

STK672-440AN. 442AN-E Forward voltage, Vdf -Output current, IOH

Substrate temperature rise, $\Delta \mathrm{Tc}$ (no heat sink) - Internal average power dissipation, PdAV

5. Thermal design

[Operating range in which a heat sink is not used]
Use of a heat sink to lower the operating substrate temperature of the HIC (Hybrid IC) is effective in increasing the quality of the HIC.
The size of heat sink for the HIC varies depending on the magnitude of the average power loss, PdAV, within the HIC. The value of PdAV increases as the output current increases. To calculate PdAV, refer to "Calculating Internal HIC Loss" in the specification document.
Calculate the internal HIC loss, PdAV, assuming repeat operation such as shown in Figure 1 below, since conduction during motor rotation and off time both exist during actual motor operations,

Figure 1 Motor Current Timing
T1: Motor rotation operation time
T2: Motor hold operation time
T3: Motor current off time
T2 may be reduced, depending on the application.
T0: Single repeated motor operating cycle
IO 1 and IO2: Motor current peak values
Due to the structure of motor windings, the phase current is a positive and negative current with a pulse form.
Note that figure 1 presents the concepts here, and that the on/off duty of the actual signals will differ.
The hybrid IC internal average power dissipation PdAV can be calculated from the following formula.

$$
\text { PdAV }=(\mathrm{T} 1 \times \mathrm{P} 1+\mathrm{T} 2 \times \mathrm{P} 2+\mathrm{T} 3 \times 0) \div \mathrm{TO}---------------------------(\mathrm{-})
$$

(Here, P 1 is the PdAV for $\mathrm{I}_{\mathrm{O}} 1$ and P 2 is the PdAV for $\mathrm{I}_{\mathrm{O}}{ }^{2}$)
If the value calculated using Equation (I) is 1.5 W or less, and the ambient temperature, Ta , is $60^{\circ} \mathrm{C}$ or less, there is no need to attach a heat sink. Refer to Figure 2 for operating substrate temperature data when no heat sink is used.
[Operating range in which a heat sink is used]
Although a heat sink is attached to lower Tc if PdAV increases, the resulting size can be found using the value of $\theta \mathrm{c}-\mathrm{a}$ in Equation (II) below and the graph depicted in Figure 3.
$\theta c-a=(T c$ max-Ta) $\div P d A V$ (II)

Tc max: Maximum operating substrate temperature $=105^{\circ} \mathrm{C}$
Ta: HIC ambient temperature
Although a heat sink can be designed based on equations (I) and (II) above, be sure to mount the HIC in a set and confirm that the substrate temperature, Tc , is $105^{\circ} \mathrm{C}$ or less.
The average HIC power loss, PdAV, described above represents the power loss when there is no avalanche operation. To add the loss during avalanche operations, be sure to add Equation (3-2), "Allowable STK672-4** Avalanche Energy Value", to PdAV.

Figure 2

Figure 3

6. Mitigated Curve of Package Power Loss, PdPK, vs. Ambient Temperature, Ta

Package power loss, PdPK, refers to the average internal power loss, PdAV, allowable without a heat sink. The figure below represents the allowable power loss, PdPK , vs. fluctuations in the ambient temperature, Ta. Power loss of up to 3.1 W is allowable at $\mathrm{Ta}=25^{\circ} \mathrm{C}$, and of up to 1.75 W at $\mathrm{Ta}=60^{\circ} \mathrm{C}$.

* The package thermal resistance $\theta \mathrm{c}-\mathrm{a}$ is $25.8^{\circ} \mathrm{C} / \mathrm{W}$.

7. Other usage notes

In addition to the "Notes" indicated in the Sample Application Circuit, care should also be given to the following contents during use.
(1) Allowable operating range

Operation of this product assumes use within the allowable operating range. If a supply voltage or an input voltage outside the allowable operating range is applied, an overvoltage may damage the internal control IC or the MOSFET.
If a voltage application mode that exceeds the allowable operating range is anticipated, connect a fuse or take other measures to cut off power supply to the product.
(2) Input pins

If the input pins are connected directly to the board connectors, electrostatic discharge or other overvoltage outside the specified range may be applied from the connectors and may damage the product. Current generated by this overvoltage can be suppressed to effectively prevent damage by inserting 100Ω to $1 \mathrm{k} \Omega$ resistors in lines connected to the input pins.
Take measures such as inserting resistors in lines connected to the input pins.
(3) Power connectors

If the motor power supply V_{CC} is applied by mistake without connecting the GND part of the power connector when the product is operated, such as for test purposes, an overcurrent flows through the V_{CC} decoupling capacitor, C 1 , to the parasitic diode between the V_{DD} of the internal control IC and GND, and may damage the power supply pin block of the internal control IC.
To prevent damage in this case, connect a 10Ω resistor to the V_{DD} pin, or insert a diode between the V_{CC} decoupling capacitor C1 GND and the VDD pin.

(4) Input Signal Lines

1) Do not use an IC socket to mount the driver, and instead solder the driver directly to the board to minimize fluctuations in the GND potential due to the influence of the resistance component and inductance component of the GND pattern wiring.
2) To reduce noise caused by electromagnetic induction to small signal lines, do not design small signal lines (sensor signal lines, and 5 V or 3.3 V power supply signal lines) that run parallel in close proximity to the motor output line $\mathrm{A}(\operatorname{Pin} 4), \mathrm{AB}(\operatorname{Pin} 5), \mathrm{B}(\operatorname{Pin} 3)$, or $\mathrm{BB}(\operatorname{Pin} 1)$ phases.
(5) When mounting multiple drivers on a single board

When mounting multiple drivers on a single board, the GND design should mount a VCC decoupling capacitor, C 1 , for each driver to stabilize the GND potential of the other drivers. The key wiring points are as follows.

(6) V_{CC} operating limit

When the output (for example F1) of a 2-phase stepper motor driver is turned OFF, the AB phase back electromotive force eab produced by current flowing to the paired F2 parasitic diode is induced in the F1 side, causing the output voltage VFB to become twice or more the V_{CC} voltage. This is expressed by the following formula.

$$
\begin{aligned}
\mathrm{VFB} & =\mathrm{V}_{\mathrm{CC}}+\mathrm{eab} \\
& =\mathrm{V}_{\mathrm{CC}}+\mathrm{V}_{\mathrm{CC}}+\mathrm{IOH}_{\mathrm{OH}} \times \mathrm{RM}+\mathrm{Vdf}(1.6 \mathrm{~V})
\end{aligned}
$$

V_{CC} : Motor supply voltage, IOH : Motor current set by Vref
Vdf: Voltage drop due to F2 parasitic diode and current detection resistor R1, RM: Motor winding resistance value Using the above formula, make sure that VFB is always less than the MOSFET withstand voltage of 100V. This is because there is a possibility that operating limit of $V_{C C}$ falls below the allowable operating range of 46 V , due to the RM and IOH specifications.

The oscillating voltage in excess of VFB is caused by LCRM (inductance, capacitor, resistor, mutual inductance) oscillation that includes micro capacitors C, not present in the circuit. Since M is affected by the motor characteristics, there is some difference in oscillating voltage according to the motor specifications. In addition, constant voltage drive without constant current drive enables motor rotation at $\mathrm{V}_{\mathrm{CC}} \geq 0 \mathrm{~V}$.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK672-440AN-E	SIP-19 (Pb-Free)	$15 /$ Tube

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801

LB11851FA-BH NCV70627DQ001R2G

