STK682-010-E

Thick Film Hybrid IC

2-phase Stepping Motor Driver

Overview

The STK682-010-E is a hybrid IC for use as a Bipolar, 2-phase stepping motor driver with PWM current control.

Function

- Output on-resistance (High side 0.3Ω, Low side 0.25Ω, Total $0.55 \Omega ; \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{IO}=2.5 \mathrm{~A}$)
- $\mathrm{VMmax}=36 \mathrm{~V}(\mathrm{DC})$, Iopmax $=3.0 \mathrm{~A}$
- 2, 1-2, W1-2, 2W1-2, 4W1-2, 8W1-2, 16W1-2, 32W1-2 phase excitation are selectable
- With built-in automatic half current maintenance energizing function
- Over current protection circuit
- Thermal shutdown circuit
- Input pull down resistance
- With reset pin and enable pin

Specifications

Absolute Maximum Ratings at $\mathrm{Tc}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VMmax		36.0	V
Peak output current	lopmax		3.0	A
Logic input voltage	VINmax		6.0	V
VREF input voltage	VREFmax		6.0	V
Operating substrate temperature	Tc		-20 to +105	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions at $\mathrm{Tc}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VM		9.0 to 32.0	V
Logic input voltage range	VIN		0 to 5.0	V
VCC input voltage range	V CC		0 to 5.0	V
VREF input voltage range	VREF		0 to 3.0	V
Output current1	Io 1	$1-2$ Phase-ex, $\mathrm{Tc} \leq 90^{\circ} \mathrm{C}$	3.0	A
Output current2	Io 2	$1-2$ Phase-ex, $\mathrm{Tc}=105^{\circ} \mathrm{C}$	2.5	A
Output current3	Io 3	2 Phase-ex, $\mathrm{Tc}=105^{\circ} \mathrm{C}$	1.8	A

Electrical Characteristics at $\mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Standby mode current drain	IMstn	VCC="L"		70	100	$\mu \mathrm{A}$
Current drain	IM	VCC="H", ENABLE="H" No Load		3.3	4.6	mA
Thermal shutdown temperature	TSD	Design guarantee	150	180	210	${ }^{\circ} \mathrm{C}$
Thermal hysteresis width	$\Delta T S D$	Design guarantee		40		${ }^{\circ} \mathrm{C}$
Logic pin input current	linL1	$\mathrm{VIN}=0.8 \mathrm{~V}$	3	8	15	$\mu \mathrm{A}$
	linH1	$\mathrm{VIN}=5 \mathrm{~V}$	30	50	70	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ pin input current	VCC	$15 \mathrm{pin}=5 \mathrm{~V}$	51	83	115	$\mu \mathrm{A}$
Logic input high-level voltage	Vinh	Pins 2,3,16,17,18,19	2.0			V
Logic input low-level voltage	Vinl	Pins 2,3,16,17,18,19			0.8	V
FDT pin high-level voltage	Vfdth	Pin 6	3.5			V
FDT pin middle-level voltage	Vfdtm	Pin 6	1.1		3.1	V
FDT pin low-level voltage	Vfdtl	Pin 6			0.8	V
Chopping frequency	Fch	C1 $=100 \mathrm{pF}$	58	83	108	kHz
Chopping frequency	losc1			10		$\mu \mathrm{A}$
Chopping oscillator circuit threshold voltage	Vtup1			1		V
	Vtdown1			0.5		V
VREF pin input voltage	Iref	VREF=1.5V, CLK=10kHz	-0.5			$\mu \mathrm{A}$
DOWN output residual voltage	VoIDO	Idown=1mA, CLK=Low		40		mV
Hold current switching frequency	Falert			1.6		Hz
Blanking time	Tb1			1		$\mu \mathrm{s}$
Output block						
Output on-resistance	Ronu	$\mathrm{I}_{\mathrm{O}}=2.0 \mathrm{~A}$, high-side ON resistance		0.30	0.42	Ω
	Rond	$\mathrm{I}=2.0 \mathrm{~A}$, low-side ON resistance		0.25	0.35	Ω
Output leakage current	Ioleak	$\mathrm{VM}=36 \mathrm{~V}$			50	$\mu \mathrm{A}$
Diode forward voltage	VD	$\mathrm{ID}=-2.0 \mathrm{~A}$		1.1	1.4	V
Current setting reference voltage	VRF	VREF=1.5V, Current ratio 100\%		300		mV
Output short-circuit protection block						
Timer latch time	Tscp			256		$\mu \mathrm{s}$

Package Dimensions

unit : mm

SIP19 29.2x14.4
CASE 127CF
ISSUE O

Block diagram

Application Circuit Example

Pin Functions

Pin No.	Pin symbol	
1	GND	Circuit GND
2	CW/CCW	Forward / Reverse signal input
3	CLK	Clock pulse signal input
4	OSC1	Chopping frequency setting capacitor connection
5	VREF	Constant-current control reference voltage input
6	FDT	Decay mode select voltage input
7	OUT2B	B phase OUTB output
8	NFB	B phase Current sense resistance connection
9	OUT1B	B phase OUTA output
10	PGND	Power GND
11	OUT2A	A phase OUTB output
12	NFA	A phase current sense resistance connection
13	OUT1A	A phase OUTA output
14	VM	Motor supply connection
15	VCC	Chip enable input
16	M1	
17	M2	Excitation-mode switching pin
18	M3	
19	ENABLE	Output enable signal input

Equivalent circuit diagram

Pin No.	Pin type	Equivalent Circuit Diagram
$\begin{gathered} 3 \\ 2 \\ 19 \\ 18 \\ 17 \\ 16 \end{gathered}$	CLK CW/CCW ENABLE M3 M2 M1	
15	VCC	
$\begin{aligned} & 13 \\ & 10 \\ & 14 \\ & 12 \\ & 11 \\ & 9 \\ & 8 \\ & 8 \\ & 7 \end{aligned}$	OUT1A PGND VM NFA OUT2A OUT1B NFB OUT2B	
5	VREF	
4	OSC1	
6	FDT	

Description of functions

(1) Excitation setting method

Set the excitation setting as shown in the following table by setting M1 pin, M2 pin and M3 pin

Input signal			MODE (Excitation)	Initial position	
M3	M2	M1		A phase current	B phase current
L	L	L	2 Phase	100\%	-100\%
L	L	H	1-2 Phase	100\%	0\%
L	H	L	W1-2 Phase	100\%	0\%
L	H	H	2W1-2 Phase	100\%	0\%
H	L	L	4W1-2 Phase	100\%	0\%
H	L	H	8W1-2 Phase	100\%	0\%
H	H	L	16W1-2 Phase	100\%	0\%
H	H	H	32W1-2 Phase	100\%	0\%

The initial position is also the default state at start-up and excitation position at counter-reset in each excitation mode

(2) Output current setting

Output current is set as shown below by the VREF pin (applied voltage) and a resistance value between NFA (B) pin and GND.

IOUT $=($ VREF $/ 5) /$ NFA (B) resistance

* The setting value above is a 100% output current in each excitation mode.
(Example) When VREF $=1.5 \mathrm{~V}$ and NFA (B) resistance is 0.3Ω, the setting current is shown below. IOUT $=(1.5 \mathrm{~V} / 5) / 0.3 \Omega=1.0 \mathrm{~A}$
(3) Chip enable terminal/ VCC function

When Chip enable terminal/ VCC pin is at low levels, the IC enters stand-by mode, all logic is reset and output is turned OFF.
When Chip enable terminal/ VCC pin is at high levels, the stand-by mode is released
(4) Step pin function

CLK pin step signal input allows advancing excitation step

Input		Operation
V_{CC}	CLK	
L	$*$	Stand-by mode
H		
H	$\boxed{ }$	Excitation step feed

(5) Forward / reverse switching function

CW/CCW	Operation
L	CW
H	CCW

The internal D/A converter proceeds by a bit on the rising edge of the step signal input to the CLK pin. In addition, CW and CCW mode are switched by CW and CCW pin setting.
In CW mode, the B phase current is delayed by 90° relative to the A phase current. In CCW mode, the B phase current is advanced by 90° relative to the A phase current.

(6) Output enable function

When the ENABLE pin is set Low, the output is forced OFF and goes to high impedance. However, the internal logic circuits are operating, so the excitation position proceeds when the CLK is input. Therefore, when ENABLE pin is returned to High, the output level conforms to the excitation position proceeded by the CLK input.

(7) DECAY mode

The DECAY mode of the output current becomes only MIXED DECAY.

FDT voltage	DECAY method
3.5 V to	SLOW DECAY
1.1 V to 3.1 V or OPEN	MIXED DECAY
to 0.8 V	FAST DECAY

(8) Chopping frequency setting function

Chopping frequency is set as shown below by a capacitor between OSC1 pin and GND.

$$
\text { Fch }=1 /\left(\mathrm{C} 1+20 \mathrm{pF} / 10 \times 10^{-6}\right)(\mathrm{Hz})
$$

(Example) When Cosc $1=100 \mathrm{pF}$, the chopping frequency is shown below.

$$
\text { Fch }=1 /\left((20+100) \times 10^{-12} / 10 \times 10^{-6}\right)(\mathrm{Hz})=83.3(\mathrm{kHz})
$$

Note

- The 20 pF is a stray capacitance which is involved by the package of STK682-010-E.
(9) Output short-circuit protection circuit

Build-in output short-circuit protection circuit makes output to enter in stand-by mode. This function prevents the IC from damaging when the output shorts circuit by a voltage short or a ground short, etc. When output short state is detected, short-circuit detection circuit starts the operating and output is once turned OFF. After the timer latch time (typ : $256 \mu \mathrm{~s}$), output is turned ON again. Still the output is at short state, the output is turned OFF and fixed in stand-by mode.
When output is fixed in stand-by mode by output short protection circuit, output is released the latch by setting Chip enable terminal/ $\mathrm{V}_{\mathrm{CC}}=$ "L"

(10) Internal DOWN pin

The DOWN pin is an open drain connection.
This pin is turned ON when no rising edge of CLK between the input signals while a period determined by a capacitor between OSC2 and GND, and outputs at low levels.
The DOWN pin output in once turned ON, is turned OFF at the next rising edge of CLK.
Holding current switching time (0.6 sectyp) is set by an internal capacitor between OSC2 pin and GND.
(11) Output current tolerance

STK682-010-E Output current tolerance Io-Tc

(12) When mounting multiple drivers on a single PC board

When mounting multiple drivers on a single PC board, the GND design should mount a VCC decoupling capacitor, C 2 and C 3 , for each driver to stabilize the GND potential of the other drivers. The key wiring points are as follows.

(13) Output current vector locus (1 step normalized 90°)

(14) Current setting ratio in each excitation mode

	32W1-2 phase(\%)10		16W1-2 phase(\%)		8W1-2 phase(\%)		4W1-2 phase(\%)		2W1-2 phase(\%)		W1-2 phase(\%)		1-2 phase(\%)		2 phase(\%)		STEP	32W1-2 phasel\%		16W1-2 phase(\%)		8W1-2 phase(\%)		4W1-2 phase(\%)		2W1-2 phase(\%)		W1-2 phase(\%)		1-2 phase(\%)		2 phase(\%)	
STEP	Ach	Bch				Ach	Bch			Ach	Bch																						
$\theta 0$	100	0	100	0	100	0	100	0	100	0	100	0	100	0			Ө65	70	72														
$\theta 1$	100	1															$\theta 66$	69	72	69	72												
$\theta 2$	100	2	100	2													$\theta 67$	68	73														
$\theta 3$	100	4															$\theta 68$	67	74	67	74	67	74										
$\theta 4$	100	5	100	5	100	5											$\theta 69$	66	75														
$\theta 5$	100	6															日70	65	76	65	76												
$\theta 6$	100	7	100	7													$\theta 71$	64	77														
$\theta 7$	100	9															072	63	77	63	77	63	77	63	77								
$\theta 8$	100	10	100	10	100	10	100	10									$\theta 73$	62	78														
$\theta 9$	99	11															$\theta 74$	62	79	62	79												
$\theta 10$	99	12	99	12													$\theta 75$	61	80														
$\theta 11$	99	13															$\theta 76$	60	80	60	80	60	80										
$\theta 12$	99	15	99	15	99	15											$\theta 77$	59	81														
$\theta 13$	99	16															$\theta 78$	58	82	58	82												
$\theta 14$	99	17	99	17													$\theta 79$	57	82														
$\theta 15$	98	18															$\theta 80$	56	83	56	83	56	83	56	83	56	83						
$\theta 16$	98	20	98	20	98	20	98	20	98	20							$\theta 81$	55	84														
$\theta 17$	98	21															$\theta 82$	53	84	53	84												
$\theta 18$	98	22	98	22													$\theta 83$	52	85														
$\theta 19$	97	23															$\theta 84$	51	86	51	86	51	86										
$\theta 20$	97	24	97	24	97	24											$\theta 85$	50	86														
$\theta 21$	97	25															Ө86	49	87	49	87												
$\theta 22$	96	27	96	27													$\theta 87$	48	88														
$\theta 23$	96	28															$\theta 88$	47	88	47	88	47	88	47	88								
$\theta 24$	96	29	96	29	96	29	96	29									$\theta 89$	46	89														
$\theta 25$	95	30															$\theta 90$	45	89	45	89												
ө26	95	31	95	31													$\theta 91$	44	90														
$\theta 27$	95	33															$\theta 92$	43	90	43	90	43	90										
$\theta 28$	94	34	94	34	94	34											$\theta 93$	42	91														
$\theta 29$	94	35															$\theta 94$	41	91	41	91												
$\theta 30$	93	36	93	36													$\theta 95$	39	92														
$\theta 31$	93	37															$\theta 96$	38	92	38	92	38	92	38	92	38	92	38	92				
$\theta 32$	92	38	92	38	92	38	92	38	92	38	92	38					$\theta 97$	37	93														
$\theta 33$	92	39															$\theta 98$	36	93	36	93												
$\theta 34$	91	41	91	41													$\theta 99$	35	94														
$\theta 35$	91	42															$\theta 100$	34	94	34	94	34	94										
$\theta 36$	90	43	90	43	90	43											$\theta 101$	33	95														
$\theta 37$	90	44															$\theta 102$	31	95	31	95												
Ө38	89	45	89	45													$\theta 103$	30	95														
ө39	89	46															$\theta 104$	29	96	29	96	29	96	29	96								
$\theta 40$	88	47	88	47	88	47	88	47									$\theta 105$	28	96														
$\theta 41$	88	48															$\theta 106$	27	96	27	96												
$\theta 42$	87	49	87	49													$\theta 107$	25	97														
$\theta 43$	86	50															$\theta 108$	24	97	24	97	24	97										
$\theta 44$	86	51	86	51	86	51											$\theta 109$	23	97														
$\theta 45$	85	52															$\theta 110$	22	98	22	98												
$\theta 46$	84	53	84	53													$\theta 111$	21	98														
$\theta 47$	84	55															$\theta 112$	20	98	20	98	20	98	20	98	20	98						
$\theta 48$	83	56	83	56	83	56	83	56	83	56							$\theta 113$	18	98														
$\theta 49$	82	57															$\theta 114$	17	99	17	99												
$\theta 50$	82	58	82	58													0115	16	99														
$\theta 51$	81	59															$\theta 116$	15	99	15	99	15	99										
$\theta 52$	80	60	80	60	80	60											$\theta 117$	13	99														
$\theta 53$	80	61															$\theta 118$	12	99	12	99												
$\theta 54$	79	62	79	62													$\theta 119$	11	99														
$\theta 55$	78	62															$\theta 120$	10	100	10	100	10	100	10	100								
$\theta 56$	77	63	77	63	77	63	77	63									$\theta 121$	9	100														
$\theta 57$	77	64															$\theta 122$	7	100	7	100												
Ө58	76	65	76	65													$\theta 123$	6	100														
$\theta 59$	75	66															$\theta 124$	5	100	5	100	5	100										
$\theta 60$	74	67	74	67	74	67											$\theta 125$	4	100														
$\theta 61$	73	68															$\theta 126$	2	100	2	100												
$\theta 62$	72	69	72	69													$\theta 127$	1	100														
$\theta 63$	72	70															$\theta 128$	0	100	0	100	0	100	0	100	0	100	0	100	0	100		
$\theta 64$	71	71	71	71	71	71	71	71	71	71	71	71	71	71	100	100																	

(15) Current wave example in each excitation mode (2 phase, 1-2 phase, W1-2 phase, 4W1-2 phase) 2 phase excitation (CW mode)

1-2 phase excitation (CW mode)

W1-2 phase excitation (CW mode)
CLK

IA

IB

4W1-2 phase excitation (CW mode)
ต
MO

11

12

(16) Current control operation

SLOW DECAY current control operation

When FDT pin voltage is a voltage over 3.5 V , the constant-current control is operated in SLOW DECAY mode.
(Sine-wave increasing direction)

(Sine-wave decreasing direction)

Each of current modes operates with the follow sequence.

- The IC enters CHARGE mode at a rising edge of the chopping oscillation.
(A period of CHARGE mode (Blanking Time) is forcibly present in approximately $1 \mu \mathrm{~s}$, regardless of the current value of the coil current (ICOIL) and set current (IREF)).
- After the period of the blanking time, the IC operates in CHARGE mode until ICOIL \geq IREF. After that, the mode switches to the SLOW DECAY mode and the coil current is attenuated until the end of a chopping period.
At the constant-current control in SLOW DECAY mode, following to the setting current from the coil current may take time (or not follow) for the current delay attenuation.

FAST DECAY current control operation

When FDT pin voltage is a voltage under 0.8 V , the constant-current control is operated in FAST DECAY mode.
(Sine-wave increasing direction)

(Sine-wave decreasing direction)

Each of current modes operates with the follow sequence.
The IC enters CHARGE mode at a rising edge of the chopping oscillation.
(A period of CHARGE mode (Blanking Time) is forcibly present in approximately $1 \mu \mathrm{~s}$, regardless of the current value of the coil current (ICOIL) and set current (IREF)).
After the period of the blanking time, The IC operates in CHARGE mode until ICOIL \geq IREF. After that, the mode switches to the FAST DECAY mode and the coil current is attenuated until the end of a chopping period. At the constant-current control in FAST DECAY mode, following to the setting current from the coil current takes short-time for the current fast attenuation, but, the current ripple value may be higher.
(Sine-wave increasing direction)

(Sine-wave decreasing direction)

Each of current modes operates with the follow sequence.
The IC enters CHARGE mode at a rising edge of the chopping oscillation.
(A period of CHARGE mode (Blanking Time) is forcibly present in approximately $1 \mu \mathrm{~s}$, regardless of the current value of the coil current (ICOIL) and set current (IREF)).
In a period of Blanking Time, the coil current (ICOIL) and the setting current (IREF) are compared.
If an ICOIL $=$ IREF state exists during the charge period:
The IC operates in CHAGE mode until ICOIL \geq IREF. After that, it switches to SLOW DECAY mode and then switches to FAST DECAY mode in the last approximately 1μ s of the period.
If no ICOIL $=$ IREF state exists during the charge period:
The IC switches to FAST DECAY mode and the coil current is attenuated with the FAST DECAY operation until the end of a chopping period.
The above operation is repeated.
Normally, in the sine wave increasing direction the IC operates in SLOW (+FAST) DECAY mode, and in the sine wave decreasing direction the IC operates in FAST DECAY mode until the current is attenuated and reaches the set value and the IC operates in SLOW (+FAST) DECAY mode.

Power Dissipation

Power dissipation calculation of STK682-010-E following becomes.
2-phase excitation
$\mathrm{Pd}=\mathrm{IOH} \times(\text { Ronu }+ \text { Rond })^{2}$
1-2-phase excitation
$\mathrm{Pd}=0.71 \times \mathrm{IOH} \times(\text { Ronu }+ \text { Rond })^{2}$

Please by substituting from electrical characteristic table value of Rond and Ronu.

Thermal design

[Operating range in which a heat sink is not used]
Use of a heat sink to lower the operating substrate temperature of the HIC (Hybrid IC) is effective in increasing the quality of the HIC.
The size of heat sink for the HIC varies depending on the magnitude of the average power loss, PdAV, within the HIC. The value of PdAV increases as the output current increases. To calculate PdAV, refer to "Calculating Internal HIC Loss for the STK672-640C-E in the specification document.
Calculate the internal HIC loss, PdAV, assuming repeat operation such as shown in Figure 1 below, since conduction during motor rotation and off time both exist during actual motor operations,

Figure 1 Motor Current Timing
T1 : Motor rotation operation time
T2 : Motor hold operation time
T3 : Motor current off time
T2 may be reduced, depending on the application.
T0 : Single repeated motor operating cycle
IO1 and IO2 : Motor current peak values
Due to the structure of motor windings, the phase current is a positive and negative current with a pulse form.
Note that figure 1 presents the concepts here, and that the on/off duty of the actual signals will differ.
The hybrid IC internal average power dissipation PdAV can be calculated from the following formula.
$\mathrm{PdAV}=(\mathrm{T} 1 \times \mathrm{P} 1+\mathrm{T} 2 \times \mathrm{P} 2+\mathrm{T} 3 \times 0) \cdot \mathrm{TO}------------------------(\mathrm{I})$
(Here, P1 is the PdAV for IO1 and P2 is the PdAV for IO2)
If the value calculated using Equation (I) is 1.5 W or less, and the ambient temperature, Ta , is $60^{\circ} \mathrm{C}$ or less, there is no need to attach a heat sink. Refer to Figure 2 for operating substrate temperature data when no heat sink is used.
[Operating range in which a heat sink is used]
Although a heat sink is attached to lower Tc if PdAV increases, the resulting size can be found using the value of $\mathrm{c}-\mathrm{a}$ in Equation (II) below and the graph depicted in Figure 3.

```
c-a = (Tc max-Ta) · PdAV
Tc max : Maximum operating substrate temperature \(=105^{\circ} \mathrm{C}\)
Ta : HIC ambient temperature
```

Although a heat sink can be designed based on equations (I) and (II) above, be sure to mount the HIC in a set and confirm that the substrate temperature, Tc , is $105^{\circ} \mathrm{C}$ or less.

Figure 2 Substrate temperature rise, $\Delta \mathrm{Tc}$ (no heat sink) - Internal average power dissipation, PdAV

Figure 3 Heat sink area (Board thickness: 2mm) - $\theta \mathrm{c}-\mathrm{a}$

Mitigated Curve of Package Power Loss, PdPK, vs. Ambient Temperature, Ta
Package power loss, PdPK, refers to the average internal power loss, PdAV, allowable without a heat sink.
The figure below represents the allowable power loss, PdPK , vs. fluctuations in the ambient temperature, Ta.
Power loss of up to 3.1 W is allowable at $\mathrm{Ta}=25^{\circ} \mathrm{C}$, and of up to 1.75 W at $\mathrm{Ta}=60^{\circ} \mathrm{C}$.
Allowable power dissipation, $\mathrm{PdPK}($ no heat sink) - Ambient temperature, Ta

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK682-010-E	SIP-19 (Pb-Free)	15 / Tube

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801

LB11851FA-BH NCV70627DQ001R2G

