Zener Voltage Regulators
 300 mW SOD-323 Surface Mount MM3ZxxxT1G Series, SZMM3ZxxxT1G Series

This series of Zener diodes is packaged in a SOD-323 surface mount package that has a power dissipation of 300 mW . They are designed to provide voltage regulation protection and are especially attractive in situations where space is at a premium. They are well suited for applications such as cellular phones, hand held portables, and high density PC boards.

Specification Features:

- Standard Zener Breakdown Voltage Range - 2.4 V to 75 V
- Steady State Power Rating of 300 mW
- Small Body Outline Dimensions: 0.067 " $\times 0.049 "(1.7 \mathrm{~mm} \times 1.25 \mathrm{~mm})$
- Low Body Height: 0.035 " (0.9 mm)
- Package Weight: $4.507 \mathrm{mg} /$ Unit
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are $\mathrm{Pb}-$ Free Devices*

Mechanical Characteristics:

CASE: Void-free, Transfer-Molded Plastic
FINISH: All External Surfaces are Corrosion Resistant
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds
LEADS: Plated with $\mathrm{Pb}-\mathrm{Sn}$ or Sn Only ($\mathrm{Pb}-$ Free)
POLARITY: Cathode Indicated by Polarity Band
FLAMMABILITY RATING: UL 94 V-0
MOUNTING POSITION: Any

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Total Device Dissipation FR-4 Board,	P_{D}		
(Note 1) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		300	mW
Derate above $25^{\circ} \mathrm{C}$		2.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	416	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 printed circuit board, single-sided copper, mounting pad $1 \mathrm{~cm}^{2}$.

[^0]

SOD-323
CASE 477 STYLE 1

MARKING DIAGRAM

xx = Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.
ORDERING INFORMATION

Device	Package	Shipping \dagger
MM3ZxxxT1G, SZMM3ZxxxT1G	SOD-323 (Pb-Free)	$3,000 /$ Tape \& Reel
MM3ZxxxT3G, SZMM3ZxxxT3G	SOD-323 (Pb-Free)	$10,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the Electrical Characteristics table on page 2 of this data sheet.

MM3ZxxxT1G Series, SZMM3ZxxxT1G Series

ELECTRICAL CHARACTERISTICS

Symbol	Parameter
V_{Z}	Reverse Zener Voltage @ I_{ZT}
I_{ZT}	Reverse Current
Z_{ZT}	Maximum Zener Impedance @ I_{ZT}
I_{ZK}	Reverse Current
Z_{ZK}	Maximum Zener Impedance @ I_{ZK}
I_{R}	Reverse Leakage Current @ V_{R}
V_{R}	Reverse Voltage
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}
$\Theta \mathrm{V}_{\mathrm{Z}}$	Maximum Temperature Coefficient of V_{Z}
C	Max. Capacitance $@ \mathrm{~V}_{\mathrm{R}}=0$ and $\mathrm{f}=1 \mathrm{MHz}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V}$ Max. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for all types)

Device*	Device Marking	Zener Voltage (Note 2)				Zener Impedance			Leakage Current		$\begin{gathered} \Theta V_{Z} \\ (\mathrm{mV} / \mathrm{k}) \\ @ \mathrm{I}_{\mathrm{ZT}} \end{gathered}$		$\begin{gathered} c \\ @ V_{R}=0 \\ f=1 \mathrm{MHz} \\ \hline \mathrm{pF} \end{gathered}$
		$\mathrm{V}_{\mathbf{Z}}$ (Volts)			@ $\mathbf{I V T}^{\text {L }}$	$\begin{gathered} Z_{\mathrm{ZT}} \\ @ \mathrm{I}_{\mathrm{ZT}} \end{gathered}$	$\mathrm{Z}_{\mathbf{Z K}}$ @ $\mathbf{I V K}^{\text {l }}$		I_{R} @ V_{R}				
		Min	Nom	Max	mA	Ω	Ω	mA	$\mu \mathrm{A}$	Volts	Min	Max	
MM3Z2V4T1G	00	2.2	2.4	2.6	5	100	1000	0.5	50	1.0	-3.5	0	450
MM3Z2V7T1G	01	2.5	2.7	2.9	5	100	1000	0.5	20	1.0	-3.5	0	450
MM3Z3V0T1G	02	2.8	3.0	3.2	5	100	1000	0.5	10	1.0	-3.5	0	450
MM3Z3V3T1G	05	3.1	3.3	3.5	5	95	1000	0.5	5	1.0	-3.5	0	450
MM3Z3V6T1G	06	3.4	3.6	3.8	5	90	1000	0.5	5	1.0	-3.5	0	450
MM3Z3V9T1G	07	3.7	3.9	4.1	5	90	1000	0.5	3	1.0	-3.5	-2.5	450
MM3Z4V3T1G	08	4.0	4.3	4.6	5	90	1000	0.5	3	1.0	-3.5	0	450
MM3Z4V7T1G	09	4.4	4.7	5.0	5	80	800	0.5	3	2.0	-3.5	0.2	260
MM3Z5V1T1G	OA	4.8	5.1	5.4	5	60	500	0.5	2	2.0	-2.7	1.2	225
MM3Z5V6T1G	OC	5.2	5.6	6.0	5	40	200	0.5	1	2.0	-2.0	2.5	200
MM3Z6V2T1G	OE	5.8	6.2	6.6	5	10	100	0.5	3	4.0	0.4	3.7	185
MM3Z6V8T1G	OF	6.4	6.8	7.2	5	15	160	0.5	2	4.0	1.2	4.5	155
MM3Z7V5T1G	OG	7.0	7.5	7.9	5	15	160	0.5	1	5.0	2.5	5.3	140
MM3Z8V2T1G	OH	7.7	8.2	8.7	5	15	160	0.5	0.7	5.0	3.2	6.2	135
MM3Z9V1T1G	OK	8.5	9.1	9.6	5	15	160	0.5	0.2	7.0	3.8	7.0	130
MM3Z10VT1G	OL	9.4	10	10.6	5	20	160	0.5	0.1	8.0	4.5	8.0	130
MM3Z11VT1G	OM	10.4	11	11.6	5	20	160	0.5	0.1	8.0	5.4	9.0	130
MM3Z12VT1G	ON	11.4	12	12.7	5	25	80	0.5	0.1	8.0	6.0	10	130
MM3Z13VT1G	OP	12.4	13.25	14.1	5	30	80	0.5	0.1	8.0	7.0	11	120
MM3Z15VT1G	OT	14.3	15	15.8	5	30	80	0.5	0.05	10.5	9.2	13	110
MM3Z16VT1G	OU	15.3	16.2	17.1	5	40	80	0.5	0.05	11.2	10.4	14	105
MM3Z18VT1G	OW	16.8	18	19.1	5	45	80	0.5	0.05	12.6	12.4	16	100
MM3Z20VT1G	OZ	18.8	20	21.2	5	55	100	0.5	0.05	14.0	14.4	18	85
MM3Z22VT1G	10	20.8	22	23.3	5	55	100	0.5	0.05	15.4	16.4	20	85
MM3Z24VT1G	11	22.8	24.2	25.6	5	70	120	0.5	0.05	16.8	18.4	22	80
MM3Z27VT1G	12	25.1	27	28.9	2	80	300	0.5	0.05	18.9	21.4	25.3	70
MM3Z30VT1G	14	28	30	32	2	80	300	0.5	0.05	21.0	24.4	29.4	70
MM3Z33VT1G	18	31	33	35	2	80	300	0.5	0.05	23.2	27.4	33.4	70
MM3Z36VT1G	19	34	36	38	2	90	500	0.5	0.05	25.2	30.4	37.4	70
MM3Z39VT1G	20	37	39	41	2	130	500	0.5	0.05	27.3	33.4	41.2	45
MM3Z43VT1G	21	40	43	46	2	150	500	0.5	0.05	30.1	37.6	46.6	40
MM3Z47VT1G	1A	44	47	50	2	170	500	0.5	0.05	32.9	42.0	51.8	40
MM3Z51VT1G	1 C	48	51	54	2	180	500	0.5	0.05	35.7	46.6	57.2	40
MM3Z56VT1G	1D	52	56	60	2	200	500	0.5	0.05	39.2	52.2	63.8	40
MM3Z62VT1G	2A	58	62	66	2	215	500	0.5	0.05	43.4	58.9	71.8	35
MM3Z68VT1G	1F	64	68	72	2	240	500	0.5	0.05	47.6	65.6	79.8	35
MM3Z75VT1G	1G	70	75	79	2	255	500	0.5	0.05	52.5	73.4	88.6	35

[^1]2. Zener voltage is measured with a pulse test current I_{Z} at an ambient temperature of $25^{\circ} \mathrm{C}$

MM3ZxxxT1G Series, SZMM3ZxxxT1G Series

TYPICAL CHARACTERISTICS

Figure 1. Effect of Zener Voltage on Zener Impedance

Figure 2. Typical Forward Voltage

Figure 3. Typical Capacitance

Figure 4. Typical Leakage Current

Figure 5. Zener Voltage versus Zener Current (V_{Z} Up to 12 V)

Figure 6. Zener Voltage versus Zener Current (12 V to 75 V)

MM3ZxxxT1G Series, SZMM3ZxxxT1G Series
TYPICAL CHARACTERISTICS

Figure 7. Steady State Power Derating

CASE 477-02

ISSUE H
DATE 13 MAR 2007

SCALE 4:1

SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD

FIMENSIONS A AND B DO NOT INCLUDE
5. DIMENSION L IS MEASURED FROM END OF RADIUS

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.80	0.90	1.00	0.031	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A3	0.15 REF			0.006 REF		
b	0.25	0.32	0.4	0.010	0.012	0.016
C	0.089	0.12	0.177	0.003	0.005	0.007
D	1.60	1.70	1.80	0.062	0.066	0.070
E	1.15	1.25	1.35	0.045	0.049	0.053
L	0.08			0.003		
H $_{\text {E }}$	2.30	2.50	2.70	0.090	0.098	0.105

GENERIC MARKING DIAGRAM*

> XX $=$ Specific Device Code $M=$ Date Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

STYLE 1:
PIN 1. CATHODE (POLARITY BAND) 2. ANODE

STYLE 2 : NO POLARITY
XX = Specific Device Code
$M=$ Date Code
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot " "",
may or may not be present.
STYLE 1:
PIN 1. CATHODE (POLARITY BAND) STYLE 2: NO POLARITY
2. ANODE

DOCUMENT NUMBER:	98ASB17533C	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	SOD-323	PAGE 1 OF 1

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
RKZ13B2KG\#P1 DL5234B EDZTE6113B 1N4682 1N4691 1N4693 1N4732A 1N4733A-TR 1N4736A 1N4750A 1N4759ARL 1N5241B
1N5365B 1N5369B 1N747A 1N959B 1N964B 1N966B 1N972B NTE149A NTE5116A NTE5121A NTE5147A NTE5152A NTE5155A
NTE5164A JANS1N4974US 1N4692 1N4700 1N4702 1N4704 1N4711 1N4714 1N4737A 1N4745ARL 1N4752A 1N4752ARL
1N4760ARL 1N5221B 1N5236B 1N5241BTR 1N5242BTR 1N5350B 1N5352B 1N961BRR1 1N964BRL RKZ5.1BKU\#P6
3SMAJ5950B-TP 3SMBJ5925B-TP TDZTR24

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: *Includes SZ-prefix devices where applicable.

