Zener Diodes, 24 and 40 Watt Peak Power

SOT-23 Dual Common Anode Zeners

These dual monolithic silicon Zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Standard Zener Breakdown Voltage Range 5.6 V to 47 V
- Peak Power 24 or 40 W @ 1.0 ms (Unidirectional), per Figure 6 Waveform
- ESD Rating:
 - Class 3B (> 16 kV) per the Human Body Model Class C (> 400 V) per the Mashine Model
 - Class C (> 400 V) per the Machine Model
- ESD Rating of IEC61000-4-2 Level 4, ±30 kV Contact Discharge
- Maximum Clamping Voltage @ Peak Pulse Current
- Low Leakage $< 5.0 \ \mu A$
- Flammability Rating UL 94 V–0
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

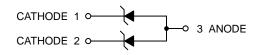
Mechanical Characteristics

CASE: Void-free, transfer-molded, thermosetting plastic case **FINISH:** Corrosion resistant finish, easily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds

Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel

Use the Device Number to order the 7 inch/3,000 unit reel. Replace the "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel.



ON Semiconductor®

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the table on page 3 of this data sheet.

MAXIMUM RATINGS

Rati	ng	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1) @ $T_L \le 25^{\circ}C$	MMBZ5V6ALT1G thru MMBZ9V1ALT1G MMBZ12VALT1G thru MMBZ47VALT1G	P _{pk}	24 40	W
Total Power Dissipation on FR-5 Board (Note @ $T_A = 25^{\circ}C$ Derate above 25°C	e 2)	P _D	225 1.8	mW mW/°C
Thermal Resistance Junction-to-Ambient		$R_{ heta JA}$	556	°C/W
Total Power Dissipation on Alumina Substrate @ T _A = 25°C Derate above 25°C Thermal Resistance Junction–to–Ambient	e (Note 3)	Ρ _D R _{θ.IA}	300 2.4 417	mW mW/°C °C/W
Junction and Storage Temperature Range		T _J , T _{stg}	– 55 to +150	°C
Lead Solder Temperature – Maximum (10 Se	cond Duration)	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 6 and derate above $T_A = 25^{\circ}C$ per Figure 7.

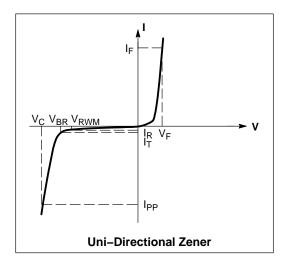
2. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.

3. Alumina = 0.4 x 0.3 x 0.024 in, 99.5% alumina.

*Other voltages may be available upon request.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBZ5V6ALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZMMBZ5V6ALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZ5V6ALT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
MMBZ6VxALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZMMBZ6VxALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZ6VxALT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
MMBZ9V1ALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZ9V1ALT13G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
MMBZxxVALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZMMBZxxVALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZxxVALT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
SZMMBZxxVALT3G*	SOT-23 (Pb-Free)	10,000 / Tape & Reel
SZMMBZxxVTALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of V _{BR}
١ _F	Forward Current
V _F	Forward Voltage @ I _F
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
I _{ZK}	Reverse Current
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

 $(V_F = 0.9 V Max @ I_F = 10 mA)$ (5% Tolerance)

24 WATTS

				Breakdown Voltage				ax Zene ance (N		V _C @ I _{PP} (Note 6)			
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR} (Note 4) (V)			@ I _T	Z _{ZT} @ I _{ZT}			vc	IPP	ΘV _{BR}
Device*	Marking	Volts	μA	Min	Nom	Max	mA	Ω	Ω	mA	v	Α	mV/°C
MMBZ5V6ALT1G/T3G	5A6	3.0	5.0	5.32	5.6	5.88	20	11	1600	0.25	8.0	3.0	1.26
MMBZ6V2ALT1G	6A2	3.0	0.5	5.89	6.2	6.51	1.0	-	-	-	8.7	2.76	2.80
MMBZ6V8ALT1G	6A8	4.5	0.5	6.46	6.8	7.14	1.0	-	-	-	9.6	2.5	3.4
MMBZ9V1ALT1G	9A1	6.0	0.3	8.65	9.1	9.56	1.0	-	-	-	14	1.7	7.5

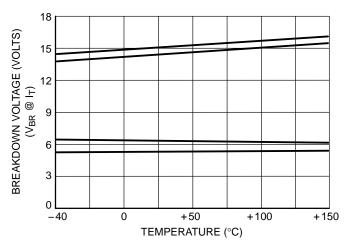
 $(V_F = 0.9 V Max @ I_F = 10 mA)$ (5% Tolerance)

40 WATTS

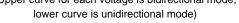
			I _R @	Breakdown Voltage				V _C @ I _{PP}				
	Device	V _{RWM}	V _{RWM}	VBF	V _{BR} (Note 4) (N		V _{BR} (Note 4) (V)		@ I _T	vc	I _{PP}	ΘV _{BR}
Device*	Marking	Volts	nA	Min Nom		Max	mA	V	Α	mV/°C		
MMBZ12VALT1G	12A	8.5	200	11.40	12	12.60	1.0	17	2.35	7.5		
MMBZ15VALT1G	15A	12	50	14.25	15	15.75	1.0	21	1.9	12.3		
MMBZ16VALT1G	16A	13	50	15.20	16	16.80	1.0	23	1.7	13.8		
MMBZ18VALT1G	18A	14.5	50	17.10	18	18.90	1.0	25	1.6	15.3		
MMBZ20VALT1G	20A	17	50	19.00	20	21.00	1.0	28	1.4	17.2		
MMBZ27VALT1G/T3G	27A	22	50	25.65	27	28.35	1.0	40	1.0	24.3		
MMBZ33VALT1G	33A	26	50	31.35	33	34.65	1.0	46	0.87	30.4		
MMBZ47VALT1G	47A	38	50	44.65	47	49.35	1.0	54	0.74	43.1		

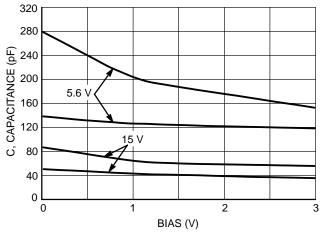
 $(V_F = 0.9 V Max @ I_F = 10 mA)$ (2% Tolerance)

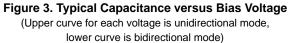
40 WATTS


			I _R @	В	reakdow	n Voltage)	V _C @ I _{PF}		
	Device	V _{RWM}	V _{RWM}	V _{BR} (Note 4) (V)			@ I _T	Vc	I _{PP}	ΘV _{BR}
Device*	Marking	Volts	nA	Min Nom Max			mA	V A		mV/°C
MMBZ16VTALT1G	16T	13	50	15.68	16	16.32	1.0	23	1.7	13.8
MMBZ47VTALT1G	47T	38	50	46.06	47	47.94	1.0	54	0.74	43.1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.
 Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for I_{Z(AC)} = 0.1 I_{Z(DC)}, with the AC frequency = 1.0 kHz.
 Surge current waveform per Figure 6 and derate per Figure 7


* Include SZ-prefix devices where applicable.


TYPICAL CHARACTERISTICS

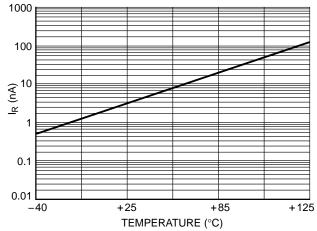


Figure 2. Typical Leakage Current versus Temperature

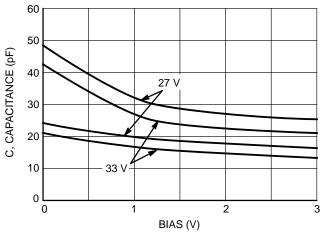
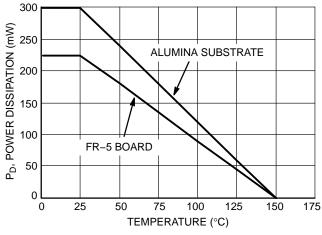
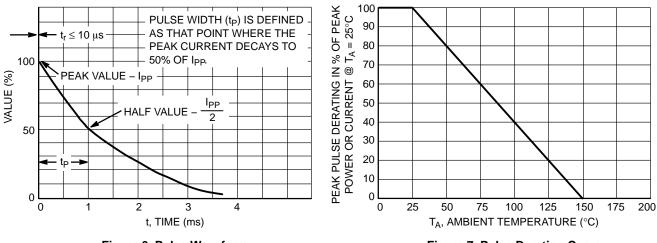
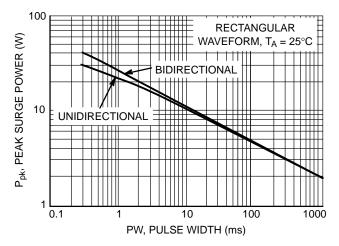



Figure 4. Typical Capacitance versus Bias Voltage (Upper curve for each voltage is unidirectional mode, lower curve is bidirectional mode)

TYPICAL CHARACTERISTICS

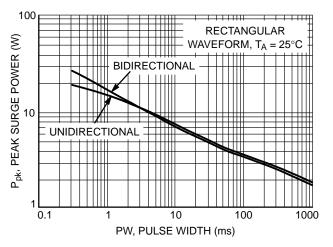
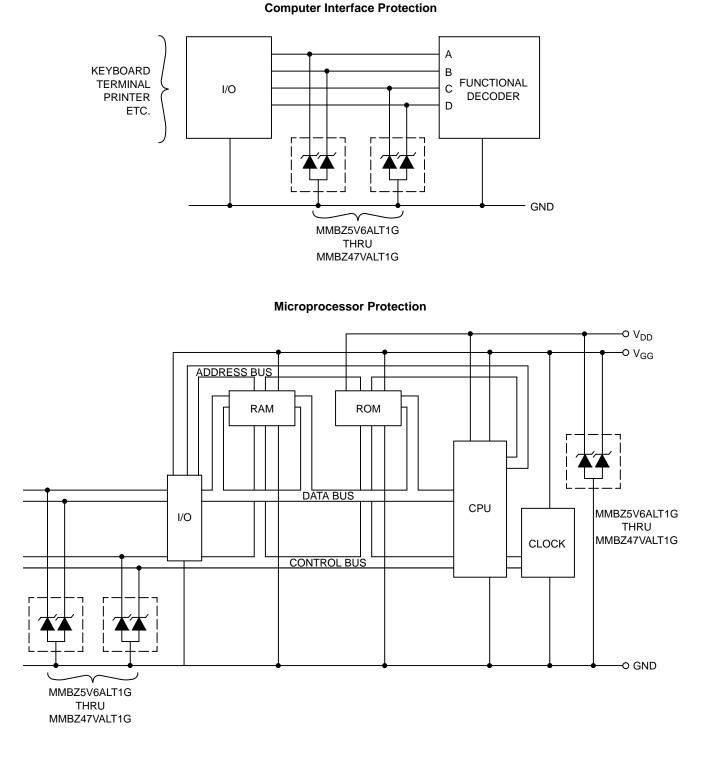
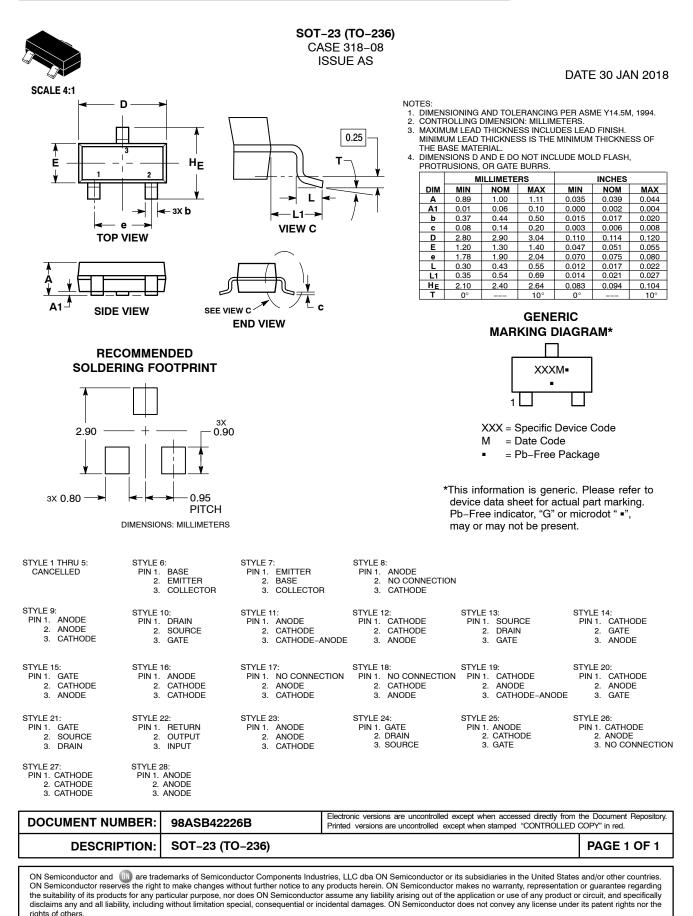

Figure 6. Pulse Waveform

Figure 8. Maximum Non-repetitive Surge Power, P_{pk} versus PW

Power is defined as $V_{RSM} \times I_Z(pk)$ where V_{RSM} is the clamping voltage at $I_Z(pk)$.


Figure 9. Maximum Non-repetitive Surge Power, P_{pk}(NOM) versus PW

Power is defined as $V_Z(NOM) \times I_Z(pk)$ where $V_Z(NOM)$ is the nominal Zener voltage measured at the low test current used for voltage classification.


TYPICAL COMMON ANODE APPLICATIONS

A dual junction common anode design in a SOT-23 package protects two separate lines using only one package. This adds flexibility and creativity to PCB design especially

when board space is at a premium. Two simplified examples of ESD applications are illustrated below.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Zener Diodes category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

 RKZ13B2KG#P1
 DL5234B
 EDZTE6113B
 1N4682
 1N4691
 1N4693
 1N4732A
 1N4733A-TR
 1N4736A
 1N4750A
 1N4759ARL
 1N5241B

 1N5365B
 1N5369B
 1N747A
 1N959B
 1N964B
 1N966B
 1N972B
 NTE5116A
 NTE5121A
 NTE5147A
 NTE5152A
 NTE5155A

 NTE5164A
 JANS1N4974US
 1N4692
 1N4702
 1N4704
 1N4711
 1N4737A
 1N4745ARL
 1N4752A
 1N4752ARL

 1N4760ARL
 1N5221B
 1N5236B
 1N5241BTR
 1N5242BTR
 1N5350B
 1N5352B
 1N961BRR1
 1N964BRL
 RKZ5.1BKU#P6

 3SMAJ5950B-TP
 3SMBJ5925B-TP
 TDZTR24