Diodes, Dual 40 Watt Peak Power, High Temperature SC-70 Dual Common Anode Zeners

MMBZHxxVAWT1G Series, SZMMBZHxxVAWT1G Series

These dual monolithic silicon Zener diodes are designed for applications requiring transient overvoltage ESD protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are high temperature rated and ideal for use in high reliability applications where board space is at a premium.

Features

- SC-70 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Standard Zener Breakdown Voltage Range: 12-33 V
- Peak Power - 40 W @ 1.0 ms (Unidirectional), per Figure 5 Waveform
- ESD Rating:
- Class 3B (> 16 kV) per the Human Body Model
- Class C (> 400 V) per the Machine Model
- Low Leakage $<5.0 \mu \mathrm{~A}$
- Flammability Rating UL $94 \mathrm{~V}-0$
- $175^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ - Rated for High Temperature, Mission Critical Applications
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These are $\mathrm{Pb}-$ Free Devices*

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case
FINISH: Corrosion resistant finish, easily solderable
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds
Package designed for optimal automated board assembly
Small package size for high density applications
Available in 8 mm Tape and Reel
Use the Device Number to order the 7 inch/3,000 unit reel.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SC-70
CASE 419 STYLE 4

MARKING DIAGRAM

XX = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
MMBZHxxVAWT1G	SC-70 (Pb-Free)	$3,000 /$ Tape \& Reel
SZMMBZHxxVAWT1G	SC-70 (Pb-Free)	$3,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DEVICE MARKING INFORMATION
See specific marking information in the device marking column of the table on page 2 of this data sheet.

MMBZHxxVAWT1G Series, SZMMBZHxxVAWT1G Series

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1) $@ T_{\mathrm{L}} \leq 25^{\circ} \mathrm{C}$	P_{pk}		W
Total Power Dissipation on FR-5 Board (Note 2) $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}		
Thermal Resistance, Junction-to-Ambient (Note 2)		225	mW
Junction and Storage Temperature Range	$\mathrm{R}_{\text {өJA }}$	605	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 5 and derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ per Figure 6.
2. $F R-5=1.0 \times 0.75 \times 0.62 \mathrm{in}$.

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_{C}	Clamping Voltage @ I_{PP}
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage
I_{R}	Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage @ I_{T}
I_{T}	Test Current
$\Theta \mathrm{V}_{\mathrm{BR}}$	Maximum Temperature Coefficient of V_{BR}
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}
Z_{ZT}	Maximum Zener Impedance @ I_{ZT}
I_{ZK}	Reverse Current
Z_{ZK}	Maximum Zener Impedance @ I_{ZK}

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)
$\left(\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V} \operatorname{Max} @ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$

Device*	Device Marking	$\frac{V_{\text {RWM }}}{\text { Volts }}$	IR@ $V_{\text {RWM }}$ nA	Breakdown Voltage				$\mathbf{V}_{\mathbf{C}}$ @ IPP (Note 4)		$\boldsymbol{\Theta} \mathrm{V}_{\text {BR }}$
				$\mathrm{V}_{\text {BR }}$ (Note 3) (V)			@ $\mathrm{I}_{\mathbf{T}}$	V_{C}	IPP	
				Min	Nom	Max	mA	V	A	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
MMBZH12VAWT1G	CK	8.5	200	11.40	12	12.60	1.0	17	2.35	7.5
MMBZH15VAWT1G	AJ	12	50	14.25	15	15.75	1.0	21	1.9	12.3
MMBZH2OVAWT1G**	-	17	50	19.00	20	21.00	1.0	28	1.4	17.2
MMBZH27VAWT1G**	-	22	50	25.65	27	28.35	1.0	40	1.0	24.3
MMBZH33VAWT1G**	-	26	50	31.35	33	34.65	1.0	46	0.87	30.4

3. $V_{B R}$ measured at pulse test current I_{T} at an ambient temperature of $25^{\circ} \mathrm{C}$.
4. Surge current waveform per Figure 5 and derate per Figure 6.
*Includes SZ prefix devices where applicable.
**AEC-Q release available upon request.

MMBZHxxVAWT1G Series, SZMMBZHxxVAWT1G Series

TYPICAL CHARACTERISTICS

Figure 1. Typical Breakdown Voltage versus Temperature
(Upper curve for each voltage is bidirectional mode, lower curve is unidirectional mode)

Figure 3. Typical Capacitance versus Bias Voltage
(Upper curve for each voltage is unidirectional mode, lower curve is bidirectional mode)

Figure 2. Typical Leakage Current versus Temperature

Figure 4. Steady State Power Derating Curve

MMBZHxxVAWT1G Series, SZMMBZHxxVAWT1G Series

TYPICAL CHARACTERISTICS

Figure 5. Pulse Waveform

Figure 7. Maximum Non-repetitive Surge Power, P_{pk} versus PW
Power is defined as $V_{R S M} \times I_{Z}(p k)$ where $V_{R S M}$ is the clamping voltage at $\mathrm{I}_{\mathrm{z}}(\mathrm{pk})$.

Figure 6. Pulse Derating Curve

Figure 8. Maximum Non-repetitive Surge Power, $\mathrm{P}_{\mathbf{p k}}$ (NOM) versus PW
Power is defined as $\mathrm{V}_{\mathrm{Z}}(\mathrm{NOM}) \times \mathrm{I}_{\mathrm{Z}}(\mathrm{pk})$ where $\mathrm{V}_{\mathrm{Z}}(\mathrm{NOM})$ is the nominal Zener voltage measured at the low test current used for voltage classification.

SCALE 4:1

NDTES:

1. DIMENSIGNING AND TQLERANCING PER ASME Y14.5M, 1982.
2. CDNTRDLLING DIMENSIDN: INCH

DIM	MILLIMETERS			INCHES		
	MIN.	NIM.	MAX.	MIN.	NDM.	MAX.
A	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
AL	0.70 REF			0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
c	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
e	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
H_{E}	2.00	2.10	2.40	0.079	0.083	0.095

SC-70 (SOT-323)

CASE 419
ISSUE P

XX = Specific Device Code
M = Date Code

- $\quad=$ Pb-Free Package

GENERIC
MARKING DIAGRAM

pase refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

CANCELLED
STYLE 2:
PIN 1. ANODE
2. N.C.

STYLE 3:
PIN 1. BASE
2. EMITTER

STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
STYLE 5:
PIN 1. ANODE
2. ANODE
3. CATHODE

STYLE 8:
PIN 1. GATE
2. SOURCE
3. DRAIN

STYLE 9 :
PIN 1. ANODE
2. CATHODE
3. CATHODE-ANODE

STYLE 10:
PIN 1. CATHODE
2. ANODE
3. ANODE-CATHODE

STYLE 11:
PIN 1. CATHODE
2. CATHODE
3. CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
RKZ13B2KG\#P1 DL5234B 1N4682 1N4691 1N4693 1N4732A 1N4733A-TR 1N4736A 1N4750A 1N4759ARL 1N5241B 1N5365B
1N5369B 1 N747A 1N959B 1N964B 1N966B 1N972B NTE149A NTE5116A NTE5121A NTE5147A NTE5152A NTE5155A
NTE5164A JANS1N4974US 1N4692 1N4700 1N4702 1N4704 1N4711 1N4714 1N4737A 1N4745ARL 1N4752A 1N4752ARL
1N4760ARL 1N5221B 1N5236B 1N5241BTR 1N5242BTR 1N5350B 1N5352B 1N961BRR1 1N964BRL RKZ5.1BKU\#P6
3SMAJ5950B-TP 3SMBJ5925B-TP TDZTR24 441774C

