MMQA, SZMMQA Quad Common Anode Series

ESD Protection Diode

SC-74 Quad Monolithic Common Anode

This quad monolithic silicon voltage suppressor is designed for applications requiring transient overvoltage protection capability. It is intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment, and other applications. Its quad junction common anode design protects four separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- SC-74 Package Allows Four Separate Unidirectional Configurations
- Peak Power - Min. 24 W @ 1.0 ms (Unidirectional), per Figure 5 Waveform
- Peak Power - Min. 150 W @ $20 \mu \mathrm{~s}$ (Unidirectional), per Figure 6 Waveform
- Maximum Clamping Voltage @ Peak Pulse Current
- Low Leakage < $2.0 \mu \mathrm{~A}$
- ESD Rating of Class 3B (exceeding 16 kV) per the Human Body Model
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant*

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
SC-74 QUAD SURGE PROTECTION 24 WATTS PEAK POWER 5.6-33 VOLTS
SIN ASSIGNMENT

MARKING DIAGRAM

$$
\begin{array}{ll}
\text { xxx } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Cade } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)

DEVICE MARKING \& ORDERING INFORMATION

See specific marking and ordering information in the device marking and ordering information table on page 6 of this data sheet.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MMQA, SZMMQA Quad Common Anode Series

THERMAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless Otherwise Noted)

Characteristic	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1) @ $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	P_{pk}	24	W
Peak Power Dissipation @ $20 \mu \mathrm{~s}$ (Note 2) @ $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	P_{pk}	150	W
Total Power Dissipation on FR-5 Board (Note 3) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 225 \\ 1.8 \end{gathered}$	$\begin{gathered} \mathrm{MW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance from Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Power Dissipation on Alumina Substrate (Note 4) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 300 \\ 2.4 \end{gathered}$	$\begin{gathered} \mathrm{MW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance from Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature - Maximum (10 Second Duration)	T_{L}	260	${ }^{\circ} \mathrm{C}$

1. Non-repetitive current pulse per Figure 5 and derate above $T_{A}=25^{\circ} \mathrm{C}$ per Figure 4.
2. Non-repetitive current pulse per Figure 6 and derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ per Figure 4.
3. FR- $5=1.0 \times 0.75 \times 0.62 \mathrm{in}$.
4. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in}$., 99.5% alumina

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless Otherwise Noted) UNIDIRECTIONAL

(Circuit tied to pins 1, 2, and 5; Pins 2, 3, and 5; Pins 2, 4, and 5; or Pins 2, 5, and 6) ($\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V}$ Max $@ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$)

Device (Note 5)	Breakdown Voltage				Max Reverse Leakage Current		Max Zener Impedance (Note 7)	Max Reverse Surge Current	Max Reverse Voltage @ IRSM (Note 8) (Clamping Voltage)	Maximum Temperature Coefficient of V_{Z}	Capacitance @ 0 Volt Bias, 1 MHz	
		$\begin{array}{\|c\|} \hline \text { VZT } \\ \text { (Note 6) } \end{array}$ (V)		@ İt	I_{R}	V_{R}						
	Min	Nom	Max	(mA)	(nA)	(V)	$\begin{aligned} & \text { ZZT @ IZT } \\ & (\Omega) \quad \begin{array}{l} (\mathrm{mA}) \end{array} \end{aligned}$	IRSM (A)	VRSM (V)	($\mathrm{mV} /{ }^{\circ} \mathrm{C}$)	Min	Max
MMQA5V6T1G	5.32	5.6	5.88	1.0	2000	3.0	400	3.0	8.0	1.26	-	-
MMQA6V2T1G/T3G	5.89	6.2	6.51	1.0	700	4.0	300	2.66	9.0	10.6	-	-
MMQA6V8T1G	6.46	6.8	7.14	1.0	500	4.3	300	2.45	9.8	10.9	100	250
MMQA12VT1G	11.4	12	12.6	1.0	75	9.1	80	1.39	17.3	14	-	-
MMQA13VT1G	12.4	13	13.7	1.0	75	9.8	80	1.29	18.6	15	-	-
MMQA15VT1G	14.3	15	15.8	1.0	75	11	80	1.1	21.7	16	-	-
MMQA18VT1G	17.1	18	18.9	1.0	75	14	80	0.923	26	19	-	-
MMQA20VT1G/T3G	19	20	21	1.0	75	15	80	0.84	28.6	20.1	-	-
MMQA22VT1G	20.9	22	23.1	1.0	75	17	80	0.758	31.7	22	-	-
MMQA24VT1G	22.8	24	25.2	1.0	75	18	100	0.694	34.6	25	-	-
MMQA27VT1G	25.7	27	28.4	1.0	75	21	125	0.615	39	28	-	-
MMQA33VT1G	31.4	33	34.7	1.0	75	25	200	0.504	48.6	37	-	-

5. Includes SZ-prefix devices where applicable.
6. V_{Z} measured at pulse test current I_{T} at an ambient temperature of $25^{\circ} \mathrm{C}$.
7. $\mathrm{Z}_{\mathrm{Z} T}$ is measured by dividing the AC voltage drop across the device by the AC current supplied. The specified limits are $\mathrm{I}_{\mathrm{Z}(\mathrm{AC})}=0.1 \mathrm{I}_{\mathrm{Z}(\mathrm{DC})}$, with $A C$ frequency $=1 \mathrm{kHz}$.
8. Surge current waveform per Figure 5 and derate per Figure 4.

MMQA, SZMMQA Quad Common Anode Series

TYPICAL CHARACTERISTICS

Figure 1. Typical Capacitance

Figure 3. Steady State Power Derating Curve

Figure 2. Typical Leakage Current

Figure 4. Pulse Derating Curve

MMQA, SZMMQA Quad Common Anode Series

TYPICAL CHARACTERISTICS

Figure 5. $10 \times 1000 \boldsymbol{\mu s}$ Pulse Waveform

Figure 7. Maximum Non-Repetitive Surge Power, P_{pk} versus PW

Figure 6. $\mathbf{8} \times \mathbf{2 0} \boldsymbol{\mu} \mathbf{s}$ Pulse Waveform

Figure 8. Typical Maximum Non-Repetitive Surge Power, \mathbf{P}_{pk} versus $\mathrm{V}_{\mathbf{Z}}$

Power is defined as $\mathrm{V}_{\mathrm{RSM}} \times \mathrm{I}_{\mathrm{Z}}(\mathrm{pk})$ where $\mathrm{V}_{\mathrm{RSM}}$ is the clamping voltage at $\mathrm{I}_{\mathrm{Z}}(\mathrm{pk})$.

MMQA, SZMMQA Quad Common Anode Series

TYPICAL COMMON ANODE APPLICATIONS

A quad junction common anode design in a SC-74 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially
when board space is at a premium. A simplified example of MMQA/SZMMQA Series Device applications is illustrated below.

Figure 9. Computer Interface Protection

Figure 10. Microprocessor Protection

MMQA, SZMMQA Quad Common Anode Series

DEVICE MARKING AND ORDERING INFORMATION

Device*	Device Marking	Package	Shipping
MMQA5V6T1G	5A6	$\begin{gathered} \text { SC-74 } \\ \text { (Pb-Free) } \end{gathered}$	3,000/Tape \& Reel
MMQA6V2T1G	6A2		3,000/Tape \& Reel
MMQA6V2T3G	6A2		10,000/Tape \& Reel
MMQA6V8T1G	6A8		3,000/Tape \& Reel
MMQA12VT1G	12A		3,000/Tape \& Reel
MMQA13VT1G	13A		3,000/Tape \& Reel
MMQA15VT1G	15A		3,000/Tape \& Reel
MMQA18VT1G	18A		3,000/Tape \& Reel
MMQA20VT1G	20A		3,000/Tape \& Reel
MMQA20VT3G	20A		10,000/Tape \& Reel
MMQA22VT1G	22A		3,000/Tape \& Reel
MMQA24VT1G	24A		3,000/Tape \& Reel
MMQA27VT1G	27A		3,000/Tape \& Reel
MMQA27VT3G	27A		10,000/Tape \& Reel
MMQA33VT1G	33A		3,000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
*IncludeS SZ-prefix devices where applicable.

Mechanical Characteristics:

CASE: Void-free, Transfer-molded, Thermosetting Plastic Case.
FINISH: Corrosion resistant finish, easily solderable.
Package designed for optimal automated board assembly.
Small package size for high density applications.
Available in 8 mm Tape and Reel.
Use the Device Number to order the 7 inch/3,000 unit reel.
Replace the "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel.

SC-74
CASE 318F
ISSUE P
SCALE 2:1

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
RKZ13B2KG\#P1 DL5234B EDZTE6113B 1N4682 1N4691 1N4693 1N4732A 1N4733A-TR 1N4736A 1N4750A 1N4759ARL 1N5241B
1N5365B 1N5369B 1N747A 1N959B 1N964B 1N966B 1N972B NTE149A NTE5116A NTE5121A NTE5147A NTE5152A NTE5155A
NTE5164A JANS1N4974US 1N4692 1N4700 1N4702 1N4704 1N4711 1N4714 1N4737A 1N4745ARL 1N4752A 1N4752ARL
1N4760ARL 1N5221B 1N5236B 1N5241BTR 1N5242BTR 1N5350B 1N5352B 1N961BRR1 1N964BRL RKZ5.1BKU\#P6
3SMAJ5950B-TP 3SMBJ5925B-TP TDZTR24

[^0]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

