NCP3712ASN, SZNCP3712ASN

Over Voltage Protected High Side Switch

This switch is primarily intended to protect loads from transients by isolating the load from the transient energy rather than absorbing it.

Features

- Capable of Switching Loads of up to 200 mA without External Rboost
- Switch Shuts Off in Response to an Over Voltage Input Transient
- Features Active Turn Off for Fast Input Transient Protection
- Flexible Over Voltage Protection Threshold Set with External Zener
- Automatic Recovery after Transient Decays Below Threshold
- Withstands Input Transients up to 105 V Peak
- Guaranteed Off State with Enbl Input
- ESD Resistant in Accordance with the 2000 V Human Body Model
- Extremely Low Saturation Voltage
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free Devices

Applications Include:

- High Voltage Transient Isolation
- Power Switching to Electronic Modules
- DC Power Distribution in Line Operated Equipment
- Buffering Sensitive Circuits from Poorly Regulated Power Supplies
- Pre-conditioning of Voltage Regulator Input Voltage

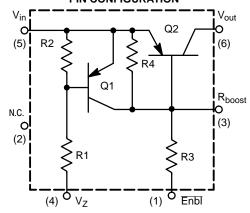


Figure 1. Typical Application Circuit

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM


SC-74 CASE 318F

BAG = Device Code
M = Date Code

= Pb-Free Package(Note: Microdot may be in either location)

INTERNAL CIRCUIT DIAGRAM/ PIN CONFIGURATION

ORDERING INFORMATION

Device	Package	Shipping [†]
NCP3712ASNT1G	SC-74	3000 / Tape &
SZNCP3712ASNT1G	(Pb-Free)	Reel
NCP3712ASNT3G	SC-74	10,000 / Tape &
SZNCP3712ASNT3G	(Pb-Free)	Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NCP3712ASN, SZNCP3712ASN

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted) (Note 1)

Rating		Symbol	Value	Unit
Input-to-Output Voltage		V _{io}	105	V
Reverse Input-to-Vz. Voltage		V _{in(rev)}	-9.0	V
Reverse Input-to-Rboost Voltage		V _{in(rev)}	-5.0	V
Output Load Current – Continuous		I _{load}	-300	mA
Enbl Input Current – Continuous		I _{enbl}	5.0	mA
Vz Input Current – Continuous		Iz	3.0	mA
Rboost Input Current – Continuous		I _{boost}	10	mA
Junction Temperature		TJ	125	°C
Operating Ambient Temperature Range		T _A	-40 to +85	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Device Power Dissipation (Minimum Footprint)		P _D	300	mW
Derate Above 25°C		_	2.4	mW/°C
Latchup Performance:	Positive Negative	I _{Latchup}	200 200	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

This device contains ESD protection and exceeds the following tests: Human Body Model 1500 V per MIL-STD-883, Method 3015. Machine Model Method 150 V.

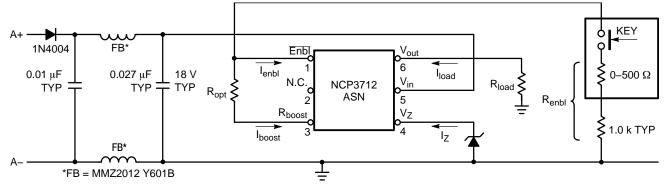


Figure 2. Typical Applications Circuit for Load Dump Transient Protection

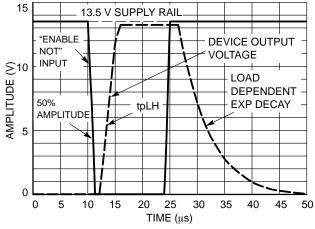


Figure 3. Enable NOT Switching Waveforms

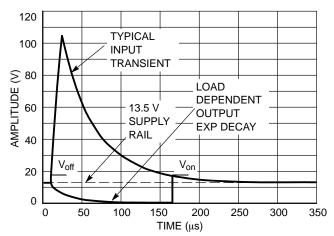


Figure 4. Load Dump Waveforms

NCP3712ASN, SZNCP3712ASN

ELECTRICAL CHARACTERISTICS (V_{in} = 12.5 V_{DC} Ref to Gnd, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u> </u>				
Input-Output Breakdown Voltage (@ I _{out} = 200 μA)	V _(BRio)	105	_	_	Vdc
Output Reverse Breakdown Voltage (@ I _{out} = -1.0 mA Pulse)	V _(-BRout)	_	-0.7	_	Vdc
Output Leakage Current (V _{in} = V _{enbl} = 30 V, T _A = 25°C)	I _{load(off)}	_	-	-100	μAdc
Guaranteed "Off" State "ENBL NOT" Voltage ($I_O \le 100 \ \mu A$)	V _{enbl(off)}	13	-	_	Vdc
Required "Off" State I_z Current ($R_{load} = 100 \Omega$)	I _{z(off)}	150	-	_	μAdc
$V_{in(off)}$ (V _z = 16 V, I _{load} = 100 mA, R _{enbl} = 1500 Ω)	V _{off}	15.5	-	18.7	Vdc
ON CHARACTERISTICS					
Input–Output On Voltage (I _o = 100 mA, I _{enbl} = –3.0 mA)	V _{io(on)}	_	0.2	0.5	Vdc
	l _{o(on)}	- - -	- - -	-200 -200 -300	mAdc
$V_{in(on)}$ (V _z = 16 V, I _{load} = 100 mA, R _{enbl} = 1500 Ω)	V _{on}	8.5	_	10.5	Vdc
"ENBL NOT" Input Current (I _o = 100 mA, $V_{io(on)}$ = 0.35 Vdc, R_{enbl} = 1500 Ω)	lenbl	_	_	-1.0	mAdc
SWITCHING CHARACTERISTICS	<u>.</u>		•		
Propagation Delay Time: Hi to Lo Prop Delay; Fig. 3 (V _{in} = V _{enbl} = 13.5 V) Lo to Hi Prop Delay; Fig. 3 (V _{in} = 13.5 V, V _{enbl} = 0 V)	t _{PHL}	_ _	1.5 1.5	_ _	μS
Transition Times: Fall Time; Fig. 4 ($V_{in} = V_{enbl} = 13.5 \text{ V}$) Rise Time; Fig. 4 ($V_{in} = V_{enbl} = 0 \text{ V}$)	t _f t _r	_ _	75 400	_ _	ηS
INTERNAL RESISTORS	·				·
Input Leakage Resistor	R2	7.0	10	13	kΩ
Input Resistor	R1	3.3	4.7	6.1	kΩ
Output Leakage Resistor	R4	1.4	2.4	3.2	kΩ
Enable Input Resistor	R3	1.4	2.4	3.2	kΩ

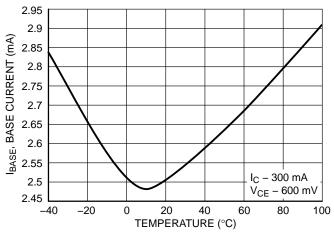
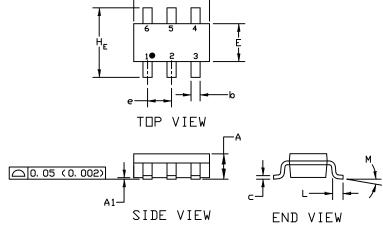


Figure 5. Q2 Base Current vs Temperature with Pin 4 Open


SC-74 CASE 318F ISSUE P

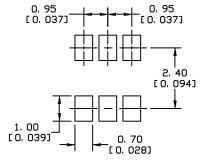
DATE 07 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
- 2. CONTROLLING DIMENSION: INCHES
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.

	MILLIMETERS		INCHES			
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
A	0. 90	1. 00	1. 10	0. 035	0. 039	0. 043
A1	0. 01	0. 06	0. 10	0. 001	0. 002	0. 004
b	0. 25	0. 37	0. 50	0. 010	0. 015	0. 020
С	0.10	0. 18	0. 26	0. 004	0. 007	0. 010
D	2. 90	3. 00	3. 10	0. 114	0. 118	0. 122
E	1. 30	1. 50	1. 70	0. 051	0. 059	0. 067
е	0. 85	0. 95	1. 05	0. 034	0. 037	0. 041
Η _E	2. 50	2. 75	3. 00	0. 099	0. 108	0. 118
L	0. 20	0. 40	0. 60	0. 008	0. 016	0. 024
М	0*		10*	0*		10*

GENERIC MARKING DIAGRAM*



XXX = Specific Device Code

M = Date Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the UN Seniconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE	STYLE 2: PIN 1. NO CONNECTION 2. COLLECTOR 3. EMITTER 4. NO CONNECTION 5. COLLECTOR 6. BASE	STYLE 3: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 4: PIN 1. COLLECTOR 2 2. EMITTER 1/EMITTER 2 3. COLLECTOR 1 4. EMITTER 3 5. BASE 1/BASE 2/COLLECTOR 3 6. BASE 3	STYLE 5: PIN 1. CHANNEL 1 2. ANODE 3. CHANNEL 2 4. CHANNEL 3 5. CATHODE 6. CHANNEL 4	STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 7: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 8: PIN 1. EMITTER 1 2. BASE 2 3. COLLECTOR 2 4. EMITTER 2 5. BASE 1 6. COLLECTOR 1	STYLE 9: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 10: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 11: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODI 4. ANODE 5. CATHODE 6. COLLECTOR	E

DOCUMENT NUMBER:	98ASB42973B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-74		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG AP22953CW12-7 MAX14919AUP+T MAX14919ATP+ KTS1697AEOAB-TR TCK207AN,LF BD2227G-LBTR TCK126BG,LF XC8111AA010R-G MPQ5072GG-AEC1-P TCK128BG,LF XC8110AA018R-G XC8110AA010R-G XC8111AA018R-G MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR