NUP1301ML3T1G, SZNUP1301ML3T1G

Low Capacitance Diode Array for ESD Protection in a Single Data Line

NUP1301ML3T1G is a MicroIntegration device designed to provide protection for sensitive components from possible harmful electrical transients; for example, ESD (electrostatic discharge).

Features

- Low Capacitance (0.9 pF Maximum)
- Single Package Integration Design
- Provides ESD Protection for JEDEC Standards JESD22

Machine Model = Class C
Human Body Model = Class 3B

- Protection for IEC61000-4-2 (Level 4)

$$
\begin{aligned}
& 8.0 \mathrm{kV} \text { (Contact) } \\
& 15 \mathrm{kV} \text { (Air) }
\end{aligned}
$$

- Ensures Data Line Speed and Integrity
- Fewer Components and Less Board Space
- Direct the Transient to Either Positive Side or to the Ground
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- $\mathrm{Pb}-$ Free Package is Available

Applications

- T1/E1 Secondary IC Protection
- T3/E3 Secondary IC Protection
- HDSL, IDSL Secondary IC Protection
- Video Line Protection
- Microcontroller Input Protection
- Base Stations
- $\mathrm{I}^{2} \mathrm{C}$ Bus Protection

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOT-23
CASE 318
STYLE 11

MARKING DIAGRAM

53 = Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
NUP1301ML3T1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
SZNUP1301ML3T1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS (Each Diode) $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	70	Vdc
Forward Current	I_{F}	215	mAdc
Peak Forward Surge Current	$\mathrm{I}_{\mathrm{FM} \text { (surge) }}$	500	mAdc
Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	70	V
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	$\mathrm{I}_{\text {F (AV) }}$	715	mA
Repetitive Peak Forward Current	$\mathrm{I}_{\text {FRM }}$	450	mA
Non-Repetitive Peak Forward Current $\begin{aligned} & \mathrm{t}=1.0 \mu \mathrm{~s} \\ & \mathrm{t}=1.0 \mathrm{~ms} \\ & \mathrm{t}=1.0 \mathrm{~s} \end{aligned}$	$\mathrm{I}_{\text {FSM }}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & 0.5 \end{aligned}$	A

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Solder Temperature Maximum 10 Seconds Duration	T_{L}	${ }^{\circ} \mathrm{C}$	
Junction Temperature	T_{J}	-65 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Each Diode)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Reverse Breakdown Voltage $\left(\mathrm{l}_{(\mathrm{BR})}=100 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\text {(BR) }}$	70	-	-	Vdc
$\begin{aligned} & \text { Reverse Voltage Leakage Current } \\ & \left(V_{R}=70 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=25 \mathrm{Vdc}, T_{J}=150^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=70 \mathrm{Vdc}, T_{J}=150^{\circ} \mathrm{C}\right) \end{aligned}$	I_{R}	-	-	$\begin{aligned} & 2.5 \\ & 30 \\ & 50 \end{aligned}$	$\mu \mathrm{Adc}$
Diode Capacitance (between I/O and ground) $\left(\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{D}	-	-	0.9	pF
$\begin{gathered} \text { Forward Voltage } \\ \left(I_{F}=1.0 \mathrm{mAdc}\right) \\ \left(I_{F}=10 \mathrm{mAdc}\right) \\ \left(I_{F}=50 \mathrm{mAdc}\right) \\ \left(I_{F}=150 \mathrm{mAdc}\right) \end{gathered}$	V_{F}	-	-	$\begin{array}{r} 715 \\ 855 \\ 1000 \\ 1250 \\ \hline \end{array}$	mV dc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
3. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in}, 99.5 \%$ alumina.
4. Include SZ-prefix devices where applicable.

NUP1301ML3T1G, SZNUP1301ML3T1G

Figure 1. ESD Test Circuit

APPLICATION NOTE

Electrostatic Discharge

A common means of protecting high-speed data lines is to employ low-capacitance diode arrays in a rail-to-rail configuration. Two devices per line are connected between two fixed voltage references such as V_{CC} and ground. When the transient voltage exceeds the forward voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$ drop of the diode plus the reference voltage, the diodes direct the
surge to the supply rail or ground. This method has several advantages including low loading capacitance, fast response time, and inherent bidirectionality (within the reference voltages). See Figure 1 for the test circuit used to verify the ESD rating for this device.

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 8235012056082356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

