Operational Amplifiers, Dual Power, 1.0 A Output Current

TCA0372, TCA0372B, **NCV0372B**

The TCA0372 is a monolithic circuit intended for use as a power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. No deadband crossover distortion provides better performance for driving coils.

Features

- Output Current to 1.0 A
- Slew Rate of 1.3 V/µs
- Wide Bandwidth of 1.1 MHz
- Internal Thermal Shutdown
- Single or Split Supply Operation
- Excellent Gain and Phase Margins
- Common Mode Input Includes Ground
- Zero Deadband Crossover Distortion
- NCV devices are AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

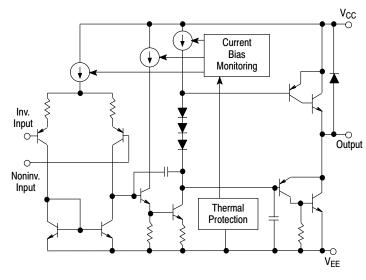
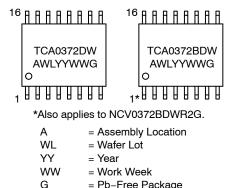
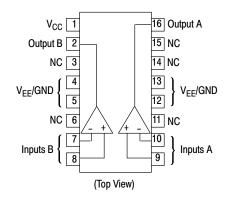


Figure 1. Representative Block Diagram



ON Semiconductor®

www.onsemi.com



MARKING DIAGRAMS

= Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

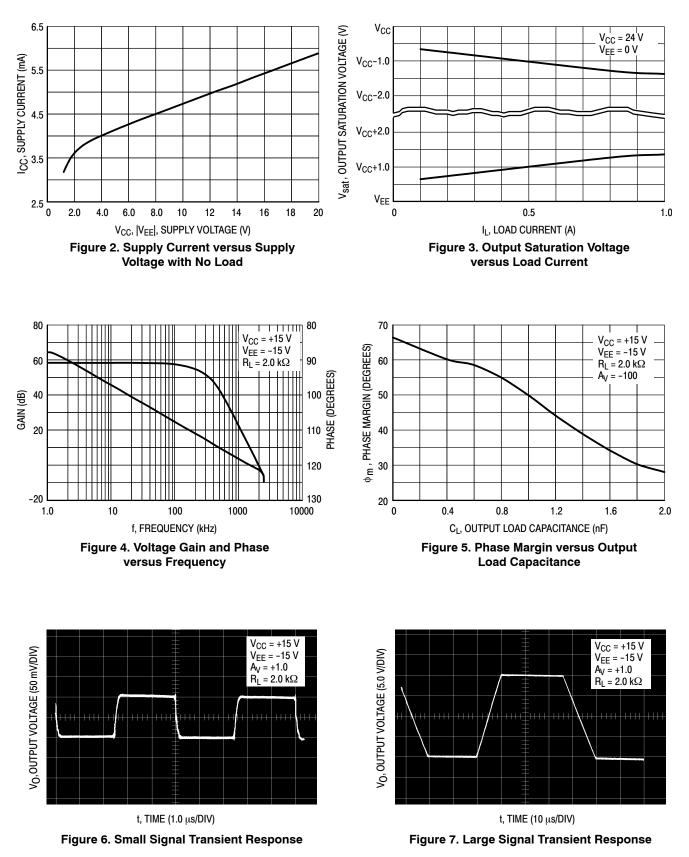
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from V_{CC} to V_{EE})	V _S	40	V
Input Differential Voltage Range	V _{IDR}	Note 1	V
Input Voltage Range	V _{IR}	Note 1	V
Junction Temperature (Note 2)	Т _Ј	+150	°C
Operating Temperature Range	T _A	-40 to +125	°C
Storage Temperature Range	T _{stg}	–55 to +150	°C
DC Output Current	۱ _۵	1.0	А
Peak Output Current (Nonrepetitive)	I _(max)	1.5	A
Thermal Resistance, Junction-to-Air	$R_{ ext{ heta}JA}$	80	°C/W
Thermal Resistance, Junction-to-Case	$R_{ ext{ heta}JC}$	12	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Either or both input voltages should not exceed the magnitude of V_{CC} or V_{EE} . 2. Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded.


	Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage ($V_{CM} = T_A = +25^{\circ}C$ T _A , T _{low} to T _{high}	0)	V _{IO}		1.0 _	15 20	mV
Average Temperature Coeff	cient of Offset Voltage	$\Delta V_{IO} / \Delta T$	-	20	-	μV/°C
Input Bias Current (V _{CM} = 0)	I _{IB}	-	100	500	nA
Input Offset Current (V _{CM} =	0)	I _{IO}	-	10	50	nA
Large Signal Voltage Gain $V_0 = \pm 10$ V, $R_L = 2.0$ k		A _{VOL}	30	100	-	V/mV
Output Voltage Swing ($I_L = T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high} $T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high}	100 mA)	V _{OH} V _{OL}	14.0 13.9 - -	14.2 _ _14.2 _	- - -14.0 -13.9	V
$\begin{array}{l} Output Voltage Swing (I_L = $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $	$T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high} $T_A = +25^{\circ}C$	V _{OH} V _{OL}	22.5 22.5 - -	22.7 - 1.3 -	- - 1.5 1.6	V
Input Common Mode Voltag $T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high}	e Range	V _{ICR}	V _{EE} to (V _{CC} -1.0) V _{EE} to (V _{CC} -1.3)		V	
Common Mode Rejection R	atio (R _S = 10 k)	CMRR	70	90	-	dB
Power Supply Rejection Rat	io (R _S = 100 Ω)	PSRR	70	90	-	dB
$T_{A} = T_{low}$ to T_{high} TC	A0372 A0372B/NCV0372B A0372 A0372B/NCV0372B	Ι _D	- - -	5.0 8.0 -	10 10 14 14	mA

DC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, R_L connected to ground, T_A = -40° to +125°C.)

AC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, R_L connected to ground, T_A = +25°C, unless otherwise noted.)

					,
Characteristics	Symbol	Min	Тур	Max	Unit
Slew Rate (V _{in} = –10 V to +10 V, R _L = 2.0 k, C _L = 100 pF) A_V = –1.0, T _A = T _{low} to T _{high}	SR	1.0	1.4	-	V/μs
Gain Bandwidth Product (f = 100 kHz, C _L = 100 pF, R _L = 2.0 k) T _A = 25°C T _A = T _{low} to T _{high}	GBW	0.9 0.7	1.4 -	-	MHz
Phase Margin $T_J = T_{low}$ to T_{high} $R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	φ _m	-	65	-	Degrees
Gain Margin $R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	A _m	-	15	-	dB
Equivalent Input Noise Voltage $R_S = 100 \ \Omega$, f = 1.0 to 100 kHz	e _n	-	22	-	nV/√Hz
Total Harmonic Distortion $A_V = -1.0$, $R_L = 50 \Omega$, $V_O = 0.5$ VRMS, f = 1.0 kHz	THD	-	0.02	-	%

NOTE: In case V_{EE} is disconnected before V_{CC}, a diode between V_{EE} and Ground is recommended to avoid damaging the device.

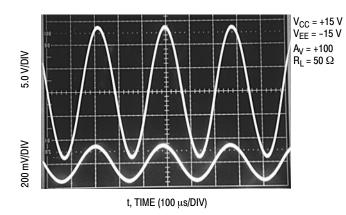
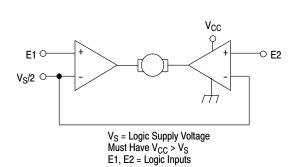
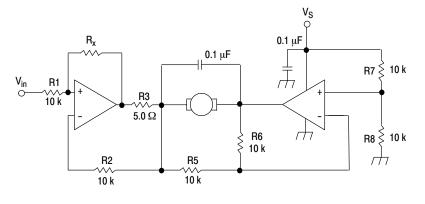




Figure 8. Sine Wave Response

Figure 9. Bidirectional DC Motor Control with Microprocessor-Compatible Inputs

For circuit stability, ensure that $R_x > \frac{2R3 \cdot R1}{R_M}$ where, R_M = internal resistance of motor. The voltage available at the terminals of the motor is: $V_M = 2(V_1 - \frac{V_S}{2}) + |R_0| \cdot I_M$ where, $|R_0| = \frac{2R3 \cdot R1}{R_X}$ and I_M is the motor current.

Figure 10. Bidirectional Speed Control of DC Motors

ORDERING INFORMATION

Device	Package	Shipping [†]
TCA0372DWR2G	SOIC-16W (Pb-Free)	1000 / Tape & Reel
TCA0372BDWR2G	SOIC-16W (Pb-Free)	1000 / Tape & Reel
NCV0372BDWR2G*	SOIC-16W (Pb-Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*AEC-Q100 Qualified and PPAP Capable

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOIC-16 WB CASE 751G ISSUE E SCALE 1:1 NOTES A DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 1. CONTROLLING DIMENSION: MILLIMETERS 2. 16 🗢 0.25@ B@ В DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. з. <u>A A A A</u> RRRR ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 4. MAXIMUM MOLD PROTRUSION OR FLASH TO BE 0.15 PER SIDE. 5. MILLIMETERS DIM MIN. MAX. H Н Α 2.35 2.65 h 8 45 0.25 A1 0.10 -16X B e DETAIL A в 0.35 0.49 0.2500 TAS BS END VIEW С 0.23 0.32 TOP VIEW D 10.15 10.45 7.40 7.60 Ε 1.27 BSC e 16X н 10.05 10.55 -L h 0.53 REF SEATIN **A1** 0.50 0.90 L SIDE VIEW М 0* 7* DETAIL A 2X SCALE 0000|0000 GENERIC 11.00 **MARKING DIAGRAM*** 1 16X 1.62 .27 XXXXXXXXXXXX PITCH XXXXXXXXXXXX RECOMMENDED AWLYYWWG MOUNTING FOOTPRINT H H Η 1 H Н XXXXX = Specific Device Code = Assembly Location А = Wafer Lot WL YY = Year ww = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may

DOCUMENT NUMBER:	98ASB42567B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16 WB		PAGE 1 OF 1		
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

or may not be present. Some products may

not follow the Generic Marking.

DUSEM

DATE 08 OCT 2021

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NCV33072ADR2G LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7