NCV2393, TS393

Micropower Dual CMOS Voltage Comparator

The NCV2393 and TS393 are micropower CMOS dual voltage comparators. They feature extremely low consumption of $6 \mu \mathrm{~A}$ typical per comparator and operate over a wide temperature range of $\mathrm{T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$. The NCV2393 and TS393 are available in an SOIC-8 package.

Features

- Extremely Low Supply Current: $6 \mu \mathrm{~A}$ Typical Per Channel
- Wide Supply Range: 2.7 to 16 V
- Extremely Low Input Bias Current: 1 pA Typical
- Extremely Low Input Offset Current: 1 pA Typical
- Input Common Mode Range Includes V_{SS}
- High Input Impedance: $10^{12} \Omega$
- Pin-to-Pin Compatibility with Dual Bipolar LM393
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

ORDERING INFORMATION

Device	Package	Shipping †
NCV2393DR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel
TS393DR2G	SOIC-8 (Pb-Free)	2500 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN DESCRIPTION

Pin	Name	Type	Description
1	OUT 1	Output	Output of comparator 1. The open-drain output requires an external pull-up resistor.
2	IN- 1	Input	Inverting input of comparator 1
3	IN+ 1	Input	Non-inverting input of comparator 1
4	VSS	Power	Negative supply
5	IN+ 2	Input	Non-inverting input of comparator 2
6	IN- 2	Input	Inverting input of comparator 2
7	OUT 2	Output	Output of comparator 2. The open-drain output requires an external pull-up resistor.
8	VDD	Power	Positive supply

ABSOLUTE MAXIMUM RATINGS (Note 1)
Over operating free-air temperature, unless otherwise stated

Parameter	Limit	Unit
Supply Voltage, $\mathrm{V}_{\mathrm{S}}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$	18	V

INPUT AND OUTPUT PINS

Input Voltage (Note 2)	18	V
Input Differential Voltage, $\mathrm{V}_{\text {ID }}$ (Note 3)	± 18	V
Input Current (through ESD protection diodes)	50	
Output Voltage	mA	
Output Current	V	V

TEMPERATURE

Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	150	${ }^{\circ} \mathrm{C}$

ESD RATINGS

Human Body Model	1500	V
Machine Model	50	V

LATCH-UP RATINGS

| Latch-up Current | mA |
| :--- | :--- | :--- |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Stresses beyond the absolute maximum ratings can lead to reduced reliability and damage.
2. Excursions of input voltages may exceed the power supply level. As long as the common mode voltage $\left[\mathrm{V}_{\mathrm{CM}}=\left(\mathrm{V}_{1 N}++\mathrm{V}_{1 N}-\right) / 2\right]$ remains within the specified range, the comparator will provide a stable output state. However, the maximum current through the ESD diodes of the input stage must strictly be observed.
3. Input differential voltage is the non-inverting input terminal with respect to the inverting input terminal. To prevent damage to the gates, each comparator includes back-to-back zener didoes between input terminals. When differential voltage exceeds 6.2 V , the diodes turn on. Input resistors of $1 \mathrm{k} \Omega$ have been integrated to limit the current in this event.
4. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC-Q100-002 (JEDEC standard: JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (JEDEC standard: JESD22-A115) Latch-up Current tested per JEDEC standard: JESD78.

THERMAL INFORMATION (Note 5)

Thermal Metric	Symbol	Value	Unit
Junction-to-Ambient (Note 6)	$\theta_{\text {JA }}$	190	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Top	$\Psi_{J T}$	107	${ }^{\circ} \mathrm{C} / \mathrm{W}$

5. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
6. Multilayer board, 1 oz . copper, $400 \mathrm{~mm}^{2}$ copper area, both junctions heated equally

OPERATING CONDITIONS

Parameter	Symbol	Limit	Unit
Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$	V_{S}	+2.7 to +16	V
Operating Free Air Temperature Range	T_{A}	-40 to +125	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathbf{V}_{\mathbf{S}}=+3 \mathbf{V}$
(Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, guaranteed by characterization and/or design.)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit

INPUT CHARACTERISTICS

Offset Voltage	V_{OS}	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply		1.4	13	mV
					14	mV
Input Bias Current (Note 7)	$I_{\text {IB }}$	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply		1		pA
					600	pA
Input Offset Current (Note 7)	los	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply		1		pA
					300	pA
Input Common Mode Range	V_{CM}		$\mathrm{V}_{\text {SS }}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{DDD}}- \\ 1.5 \end{gathered}$	V
			V_{SS}		$\begin{gathered} \mathrm{V}_{\mathrm{DDD}}- \\ 2 \end{gathered}$	V
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}$		70		dB

OUTPUT CHARACTERISTICS

Output Voltage Low	V_{OL}	$\mathrm{V}_{\mathrm{ID}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=+6 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{SS}}+$ 300	$\mathrm{V}_{\mathrm{SS}}+$ 450	mV
					$\mathrm{V}_{\mathrm{SS}}+$ 700	mV
Output Current High						

DYNAMIC PERFORMANCE

Propagation Delay Low to High	tplh	$\begin{gathered} \mathrm{V}_{\mathrm{CM}}=\text { mid-supply, } \\ \mathrm{f}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{PU}}=5.1 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	5 mV overdrive	2.1	$\mu \mathrm{s}$
			TTL input	0.6	$\mu \mathrm{s}$
Propagation Delay High to Low	$\mathrm{t}_{\text {PHL }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CM}}=\text { mid-supply, } \\ \mathrm{f}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{PU}}=5.1 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	5 mV overdrive	3.9	$\mu \mathrm{s}$
			TTL input	0.2	$\mu \mathrm{s}$

POWER SUPPLY

Power Supply Rejection Ratio	PSRR	$V_{S}=+3 \mathrm{~V}$ to +5 V		70		dB
Quiescent Current	IDD	Per channel, no load, output = LOW		6	15	$\mu \mathrm{~A}$
					$\mathbf{2 0}$	$\mu \mathrm{~A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
7. Guaranteed by characterization and/or design.

ELECTRICAL CHARACTERISTICS: $\mathbf{V}_{\mathbf{S}}=\mathbf{+ 5} \mathbf{V}$, unless otherwise noted
(Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, guaranteed by characterization and/or design.)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit

INPUT CHARACTERISTICS

Offset Voltage	V_{OS}	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply $\mathrm{V}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to 10 V		1.4	13	mV
					$\mathbf{1 4}$	mV
Input Bias Current (Note 8)	I_{IB}	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply		1		pA
Input Offset Current (Note 8)	I OS	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply			$\mathbf{6 0 0}$	pA
Input Common Mode Range	V_{CM}					
				1		pA

OUTPUT CHARACTERISTICS

Output Voltage Low	V_{OL}	$\mathrm{V}_{\mathrm{ID}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=+6 \mathrm{~mA}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{SS}}+ \\ 260 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{SS}}+ \\ & 350 \end{aligned}$	mV
				$\begin{gathered} \mathrm{V}_{\mathrm{SS}}+ \\ 550 \end{gathered}$	mV
Output Current High	IOH	$\mathrm{V}_{\mathrm{ID}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=+5 \mathrm{~V}$	2	40	nA
				1000	nA

DYNAMIC PERFORMANCE

Fall Time	$\mathrm{t}_{\text {FALL }}$	$\begin{gathered} 50 \mathrm{mV} \text { overdrive, } \mathrm{f}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{PU}}=5.1 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		25	ns
Propagation Delay Low to High	$t_{\text {PLH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CM}}=\text { mid-supply, } \\ \mathrm{f}=10 \mathrm{kHz}, \mathrm{RPD}_{\mathrm{P}}=5.1 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	5 mV overdrive	2.1	$\mu \mathrm{S}$
			10 mV overdrive	1.2	$\mu \mathrm{s}$
			20 mV overdrive	0.8	$\mu \mathrm{s}$
			40 mV overdrive	0.5	$\mu \mathrm{s}$
			TTL input	0.6	$\mu \mathrm{s}$
Propagation Delay High to Low	${ }_{\text {tPHL }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CM}}=\text { mid-supply, } \\ \mathrm{f}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{PU}}=5.1 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	5 mV overdrive	5.8	$\mu \mathrm{s}$
			10 mV overdrive	3.2	$\mu \mathrm{s}$
			20 mV overdrive	1.7	$\mu \mathrm{s}$
			40 mV overdrive	1.0	$\mu \mathrm{s}$
			TTL input	0.3	$\mu \mathrm{s}$

POWER SUPPLY

Power Supply Rejection Ratio	PSRR	VS $=+5$ V to $=+10$ V		80		$d B$
Quiescent Current	IDD	Per channel, no load, output = LOW		6	15	$\mu \mathrm{~A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
8. Guaranteed by characterization and/or design

Figure 1. I_{B} and l_{OS} vs. Temperature

Figure 3. V_{OL} vs. Temperature

Figure 5. IDD vs. Temperature

Figure 2. V_{OL} vs. $\mathrm{IOL}_{\mathrm{OL}}$

Figure 4. I_{DD} vs. V_{S}

Figure 6. Propagation Delay vs. $\mathbf{V}_{\mathbf{S}}$

Figure 7. $\mathrm{t}_{\text {PLH }}$ vs. Overdrive

Figure 8. $\mathrm{t}_{\text {PHL }}$ vs. Overdrive

Figure 9. Fall Time vs. $\mathbf{V}_{\mathbf{S}}$

Figure 10. V_{OS} vs. $\mathrm{V}_{\mathrm{CM}}\left(\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}\right)$

Figure 11. $\mathrm{V}_{\mathrm{OS}} \mathrm{vs} . \mathrm{V}_{\mathrm{CM}}\left(\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}\right)$

Figure 12. V_{OS} vs. $\mathrm{V}_{\mathrm{CM}}\left(\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}\right)$

Figure 13. Offset Voltage Distribution

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Comparators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
SC2903VDR2G LM2901SNG LM339SNG UPC271G2-A 55122 5962-8757203IA NTE911 5962-8751601DA LM339EDR2G NTE922 SC2901DR2G LM2903M/TR LM2903F-E2 MCP6544-EP LM2901EDR2G TS391SN2T1G LM111JG LM239APT HMC675LC3CTR 5962-8765801PA MAX9024AUD+ LT6700HVIS6-2\#TRMPBF 5962-8765902CA ADCMP394ARZ-RL7 LM339AMX LTC1440IMS8\#PBF AZV331KSTR-G1 LTC1841IS8\#PBF LTC1440CN8\#PBF LTC1542CS8\#PBF LTC1445CS\#PBF TL331VSN4T3G LT6700IDCB1\#TRMPBF LTC1042CN8\#PBF LTC1540CMS8\#PBF LT6703CDC-2\#TRMPBF ADCMP607BCPZ-R7 LT1720CDD\#PBF LTC1040CN\#PBF LT6700MPDCB-1\#TRMPBF LT6700IDCB-3\#TRMPBF LTC1440IS8\#PBF S-89431ACNC-HBVTFG NTE1718 NTE943 NTE943M NTE943SM TA75S393F,LF(T ALD2301APAL ALD2302APAL

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

