Transient Voltage Suppressors

Low Clamping Voltage Surge Protection Diode Array

The TVS4201MR6 transient voltage suppressor is designed to protect high speed data lines from ESD, EFT, and lightning surges.

Features

- Protection for the Following IEC Standards:
 IEC 61000–4–2 (ESD) ±30 kV (Contact)
 IEC 61000–4–5 (Lightning) 25 A (8/20 μs)
- Low Clamping Voltage
- Low Leakage
- UL Flammability Rating of 94 V-0
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- High Speed Communication Line Protection
- USB 1.1 and 2.0 Power and Data Line Protection
- Digital Video Interface (DVI)
- Monitors and Flat Panel Displays

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Power Dissipation 8/20 μs @ T _A = 25°C (Note 1)	P_{pk}	500	W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Lead Solder Temperature – Maximum (10 Seconds)	TL	260	°C
IEC 61000-4-2 Air (ESD) IEC 61000-4-2 Contact (ESD)	ESD	±30 ±30	kV
IEC 61000-4-4 (5/50 ns)	EFT	40	Α

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 1 (Pin 5 to Pin 2)

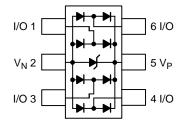
See Application Note AND8308/D for further description of survivability specs.

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

42 = Specific Device Code


M = Date Code

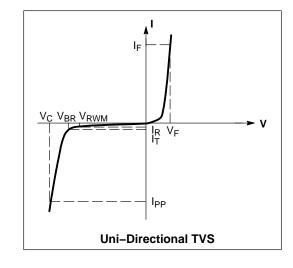
■ = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

PIN CONFIGURATION AND SCHEMATIC

ORDERING INFORMATION


Device	Package	Shipping
TVS4201MR6T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel
SZTVS4201MR6T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

Symbol	Parameter	
I _{PP}	Maximum Reverse Peak Pulse Current	
V _C	Clamping Voltage @ I _{PP}	
V_{RWM}	Working Peak Reverse Voltage	
I _R	Maximum Reverse Leakage Current @ V _{RWM}	
V_{BR}	Breakdown Voltage @ I _T	
Ι _Τ	Test Current	
I _F	Forward Current	
V _F	Forward Voltage @ I _F	
P _{pk}	Peak Power Dissipation	
С	Capacitance @ V _R = 0 and f = 1.0 MHz	

^{*}See Application Note AND8308/D for detailed explanations of datasheet parameters.

ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V_{RWM}	(Note 2)			5.0	V
Breakdown Voltage	V_{BR}	I _T =1 mA, (Note 3)	6.0			V
Reverse Leakage Current	I _R	V _{RWM} = 5 V			1.0	μΑ
Clamping Voltage	V _C	I _{PP} = 1 A, Any I/O to GND			8.5	V
$(t_p = 8/20 \mu s per Figure 1)$		I _{PP} = 5 A, Any I/O to GND			9.0	
		I _{PP} = 8 A, Any I/O to GND			10	
		I _{PP} = 25 A, Any I/O to GND			12	
Junction Capacitance	CJ	V _R = 0 V, f=1 MHz between I/O Pins and GND 3.		3.0	5.0	pF
Junction Capacitance	СЈ	V _R = 0 V, f=1 MHz between I/O Pins 1.5		3.0	pF	

TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage level.

^{3.} V_{BR} is measured at pulse test current I_T.

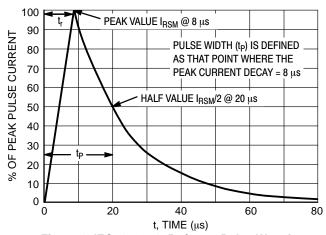


Figure 1. IEC61000-4-5 8/20 μs Pulse Waveform

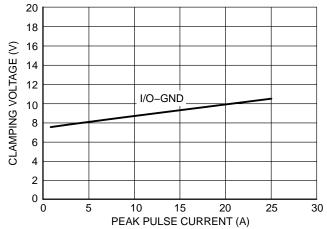
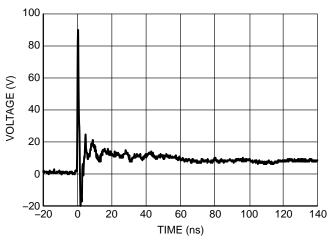



Figure 2. Clamping Voltage vs. Peak Pulse Current $(t_p$ = 8/20 μs per Figure 1)

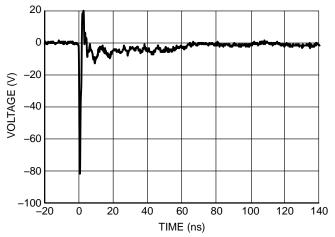
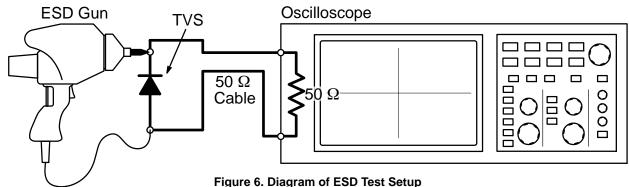


Figure 3. IEC61000-4-2 +8 kV Contact Clamping Voltage

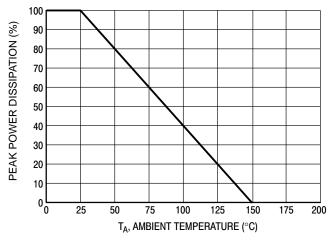

Figure 4. IEC61000-4-2 -8 kV Contact Clamping Voltage

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 5. IEC61000-4-2 Spec

The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.


ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000–4–2 waveform. Since the IEC61000–4–2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

TYPICAL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

5.0 4.5 JUNCTION CAPACITANCE (pF) 4.0 3.5 3.0 I/O-GND 2.5 2.0 I/O-I/O 1.5 1.0 0.5 0.0 5 V_{BR}, REVERSE VOLTAGE (V)

Figure 7. Pulse Derating Curve

Figure 8. Junction Capacitance vs Reverse Voltage

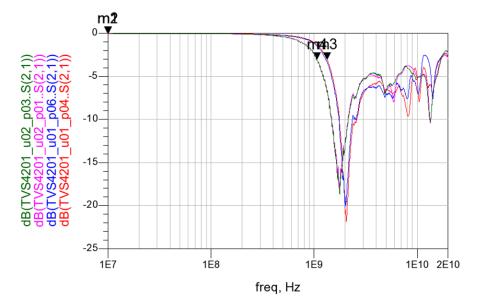


Figure 9. RF Insertion Loss

TYPICAL APPLICATIONS

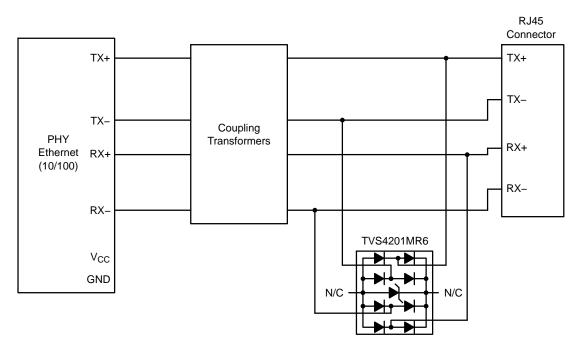


Figure 10. Protection for Ethernet 10/100 (Differential mode)

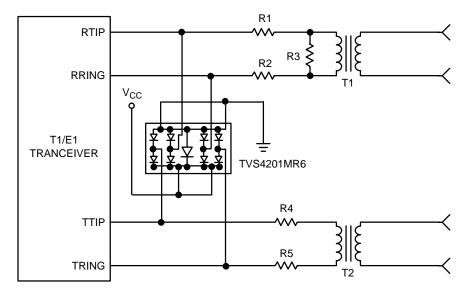
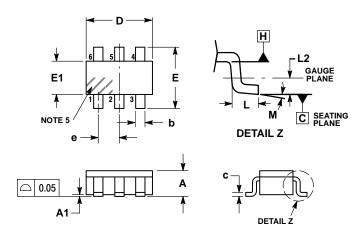
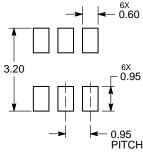



Figure 11. TI/E1 Interface Protection

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 ISSUE V

NOTES


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- 3. MAXIMUM LEAD I FIICANCESS INCLUDES LEAD FINISH, MINIMUM LEAD THICKNESS OF BASE MATERIAL.

 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS, MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.

 5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

	MILLIMETERS		
DIM	MIN	NOM	MAX
Α	0.90	1.00	1.10
A1	0.01	0.06	0.10
b	0.25	0.38	0.50
С	0.10	0.18	0.26
D	2.90	3.00	3.10
Е	2.50	2.75	3.00
E1	1.30	1.50	1.70
е	0.85	0.95	1.05
L	0.20	0.40	0.60
L2	0.25 BSC		
М	0°	-	10°

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ESD Suppressors / TVS Diodes category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP
P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327
ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF
3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7
SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA
82350120560 82356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF
CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A