OSRAM KT CSLNM1.13

Datasheet

OSRAM OSTAR ${ }^{\circledR}$ Projection Compact

KT CSLNM1.13

Compact light source with isolated heat sink for improved heat dissipation and high current chip technology for increased light output.

Applications

- Entertainment
- Factory Automation
- Projection \& Display
- Visualization

Features

- Package: white molded SMD ceramic package
- Chip technology: UX:3
- Typ. Radiation: 120° (Lambertian emitter)
- Color: $\lambda_{\text {dom }}=525 \mathrm{~nm}$ (- true green)
- Qualifications: The product qualification test plan is based on the guidelines of AEC-Q101-REV-C, Stress Test Qualification for Automotive Grade Discrete Semiconductors.
- ESD: 8 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)

Ordering Information

Type	Luminous Flux ${ }^{1)}$ $I_{F}=1000 \mathrm{~mA}$ Φ_{V}	Ordering Code
KT CSLNM1.13-MXMZ-35	$180 \ldots 280 \mathrm{Im}$	Q65113A5079

Maximum Ratings

$\left.\begin{array}{llll}\text { Parameter } & \text { Symbol } & & \text { Values } \\ \hline \text { Operating Temperature } & T_{\text {op }} & \text { min. } & \text { max. }\end{array}\right]-40^{\circ} \mathrm{C}$

Characteristics

$\mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA} ; \mathrm{T}_{\mathrm{S}}=25^{\circ} \mathrm{C}$

Parameter	Symbol		Values
Peak Wavelength	$\lambda_{\text {peak }}$	typ.	521 nm
Dominant Wavelength ${ }^{3)}$ $I_{F}=1000 \mathrm{~mA} ; \mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	$\lambda_{\text {dom }}$	min. typ. max.	519 nm 525 nm 537 nm
Viewing angle at $50 \% \mathrm{I}_{\mathrm{V}}$	2φ	typ.	120°
Radiating surface	$\mathrm{A}_{\text {color }}$	typ.	$1 \times 1 \mathrm{~mm}^{2}$
Partial Flux acc. CIE 127:2007	$\Phi_{\text {EN, 120 }}$	typ.	0.76
Forward Voltage ${ }^{4)}$ $I_{F}=1000 \mathrm{~mA}$	V_{F}	min. typ. max.	$\begin{aligned} & 2.3 \mathrm{~V} \\ & 2.9 \mathrm{~V} \\ & 3.3 \mathrm{~V} \end{aligned}$
Reverse voltage (ESD device)	$V_{\text {RESD }}$	min.	45 V
Reverse voltage ${ }^{2)}$ $\mathrm{I}_{\mathrm{R}}=20 \mathrm{~mA}$	V_{R}	max.	1.2 V
Real thermal resistance junction/solderpoint ${ }^{5}$	$\mathrm{R}_{\text {thJs real }}$	typ. max.	$\begin{aligned} & 4.1 \mathrm{~K} / \mathrm{W} \\ & 4.9 \mathrm{~K} / \mathrm{W} \end{aligned}$
Electrical thermal resistance junction/solderpoint ${ }^{5}$ with efficiency $\eta_{\mathrm{e}}=11 \%$	$\mathrm{R}_{\text {thJs elec. }}$	typ. max.	$\begin{aligned} & 3.6 \mathrm{~K} / \mathrm{W} \\ & 4.4 \mathrm{~K} / \mathrm{W} \end{aligned}$

Brightness Groups

Group	Luminous Flux ${ }^{11}$ $I_{F}=1000 \mathrm{~mA}$ min. Φ_{v}	Luminous Flux ${ }^{1)}$ $I_{F}=1000 \mathrm{~mA}$ max. Φ_{v}
MX	180 lm	210 lm
MY	210 lm	240 lm
MZ	240 Im	280 Im

Wavelength Groups

Group	Dominant Wavelength ${ }^{3)}$ $\mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$ min. $\lambda_{\text {dom }}$	Dominant Wavelength ${ }^{3)}$ $\mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$ max. $\lambda_{\text {dom }}$
3	519 nm	525 nm
4	525 nm	531 nm
5	531 nm	537 nm

Group Name on Label

Example: MX-3

Brightness Wavelength
MX 3

Relative Spectral Emission ${ }^{6}$
$\Phi_{\text {rel }}=\mathrm{f}(\lambda) ; \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Radiation Characteristics ${ }^{6)}$
$I_{\text {rel }}=\mathrm{f}(\phi) ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Relative Partial Flux ${ }^{6)}$
$\Phi_{v}(2 \varphi) / \Phi_{v}\left(180^{\circ}\right)=f(\varphi) ; T_{J}=25^{\circ} \mathrm{C}$

Forward current ${ }^{6)}$

$\mathrm{I}_{\mathrm{F}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{F}}\right) ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Relative Luminous Flux ${ }^{6}$), 7)
$\Phi_{V} / \Phi_{v}(1000 \mathrm{~mA})=\mathrm{f}\left(\mathrm{l}_{\mathrm{F}}\right) ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Dominant Wavelength 6)

$\Delta \lambda_{\text {dom }}=f\left(I_{F}\right) ; T_{j}=25^{\circ} \mathrm{C}$

Forward Voltage ${ }^{6)}$
$\Delta V_{F}=V_{F}-V_{F}\left(25^{\circ} \mathrm{C}\right)=f\left(T_{j}\right) ; I_{F}=1000 \mathrm{~mA}$

Relative Luminous Flux ${ }^{6)}$

$\Phi_{\mathrm{V}} / \Phi_{\mathrm{V}}\left(25^{\circ} \mathrm{C}\right)=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$

Dominant Wavelength ${ }^{6)}$

$\Delta \lambda_{\text {dom }}=\lambda_{\text {dom }}-\lambda_{\text {dom }}\left(25^{\circ} \mathrm{C}\right)=f\left(T_{\mathrm{j}}\right) ; \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$

Max. Permissible Forward Current
$I_{F}=f(T)$

Permissible Pulse Handling Capability

$I_{F}=f\left(t_{p}\right)$; D: Duty cycle

Permissible Pulse Handling Capability
$I_{F}=f\left(t_{p}\right)$; D: Duty cycle

Permissible F. Handling Capability
f: Frequency

Permissible F. Handling Capability
f: Frequency

Dimensional Drawing ${ }^{8)}$

general tolerance ± 0.1
lead finish Au $Z 7 / \lambda$
C63062-A4312-A3-04

Further Information:

Approximate Weight: $\quad 34.0 \mathrm{mg}$
Package marking:
ESD advice:

Cathode
The device is protected by ESD device which is connected in parallel to the Chip.

Recommended Solder Pad ${ }^{8)}$

board material selection has high impact on system reliability

E062.3010.208-02

Recommended Solder Pad ${ }^{8)}$

board material selection has high impact on system reliability

E062.3010.237-01
For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. Package not suitable for any kind of wet cleaning or ultrasonic cleaning.

Reflow Soldering Profile

Product complies to MSL Level 2 acc. to JEDEC J-STD-020E

| Profile Feature | Symbol | $\begin{array}{c}\text { Pb-Free }(\mathrm{SnAgCu}) \text { Assembly } \\ \text { Recommendation }\end{array}$ | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Maximum | | | | |$)$

All temperatures refer to the center of the package, measured on the top of the component

* slope calculation DT/Dt: Dt max. 5 s ; fulfillment for the whole T-range

Taping ${ }^{8)}$

C63062-A4312-B3-03

Tape and Reel ${ }^{9)}$

Reel Dimensions

	W	$N_{\text {min }}$	W_{1}	$W_{2 \max }$	Pieces per PU
180 mm	$12+0.3 /-0.1 \mathrm{~mm}$	60 mm	$12.4+2 \mathrm{~mm}$	18.4 mm	

Barcode-Product-Label (BPL)

Dry Packing Process and Materials ${ }^{8)}$

[^0]
Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class moderate risk (exposure time 0.25 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.
Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

For further application related information please visit www.osram-os.com/appnotes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version on our website.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications
Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.
Our products are not qualified at module and system level for such application.
In case buyer - or customer supplied by buyer - considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer.

Glossary

1) Brightness: Brightness values are measured during a current pulse of typically 25 ms , with an internal reproducibility of $\pm 8 \%$ and an expanded uncertainty of $\pm 11 \%$ (acc. to GUM with a coverage factor of $\mathrm{k}=3$).
${ }^{2)}$ Reverse Operation: This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
${ }^{3)}$ Wavelength: The wavelength is measured at a current pulse of typically 25 ms , with an internal reproducibility of $\pm 0.5 \mathrm{~nm}$ and an expanded uncertainty of $\pm 1 \mathrm{~nm}$ (acc. to GUM with a coverage factor of $k=$ $3)$.
2) Forward Voltage: The forward voltage is measured during a current pulse of typically 8 ms , with an internal reproducibility of $\pm 0.05 \mathrm{~V}$ and an expanded uncertainty of $\pm 0.1 \mathrm{~V}$ (acc. to GUM with a coverage factor of $k=3$).
3) Thermal Resistance: Rth max is based on statistic values (6 σ).
4) Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
${ }^{7)}$ Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
5) Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ± 0.1 and dimensions are specified in mm.
6) Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.

Revision History

Version	Date	Change
1.0	$2019-12-19$	Initial Version
1.1	$2020-04-03$	Schematic Transportation Box Dimensions of Transportation Box Characteristics
1.2	$2022-08-11$	Characteristics
		New Layout
	Electro - Optical Characteristics (Diagrams)	

EU RoHS and China RoHS compliant product此产品符合欧盟 RoHS 指令的要求；
按照中国的相关法规和标准，
不含有毒有害物质或元素。

Published by ams－OSRAM AG

Tobelbader Strasse 30， 8141 Premstaetten，Austria
Phone＋43 3136 500－0
ams－osram．com
© All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Power LEDs - Single Colour category:
Click to view products by Osram manufacturer:
Other Similar products are found below :
AA2810ASYSK L1CU-VLT1000000000 GB CS8PM1.13-HYHZ-35-0-350-R18 LR B6SP-T1U2-1-A3D3+DAEA-46-G3R3 GH CSSRM4.24-V7V9-1-1-700-R33 PBLA-15LTE 020010030060020 AA2810AVBS/D KT CSLNM1.13-MXMZ-34-0 ELUC3535NUB-P7085Q05075020-S21Q GY CSHPM1.23-KPKR-36-0-350-R18 LZ4-V4UVH0-0000 KB CULPM1.14-BPBQ-W2 KB CULPM1.14-AUBQW3 XEGAHR-H2-0000-000-000000H8001 XPEBRY-L1-0000-00S02 XQEAPA-00-0000-000000701 XQEBLU-00-0000-000000Z02 SPHWH2L3D30ED4V0H3 XQEBLU-00-0000-000000202 L1SP-DRD0002000000 L1SP-LME0002000000 LHUV-0405-A065 LTPLC034UVH410 XPGDRY-L1-0000-00601-SB01 XQEGRN-H0-0000-000000901 XPEEPR-L1-0000-00B01 XPGDRY-L1-0000-00501 XPGDRY-L1-0000-00401 XQEEPR-00-0000-000000901 XQEEPR-00-0000-000000A01 15335340AA350 XPCRDO-L1-R250-00701 XPEBGR-L1-0000-00D03 XPEGRN-L1-0000-00F02 LR H9PP-HZJZ-1-1 15335339AA350 XQERDO-02-0000-000000701 XPEBGR-L1-0000-00E02 15335338AA350 XPEROY-L1-R250-00903 XPEBRY-L1-R250-00R01 XPEEPR-L1-0000-00C01 MLESBL-A1-0000-000U01 XPEBPA-L1-R250-00B01 XPERED-L1-R250-00802 XQEBLU-02-0000-000000305 XTEARY-00-0000-000000K03 XTEARY-02-0000000000L03 XPEBBL-L1-R250-00302

[^0]: Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.

