OSRAM KW CWLPM3.TK

Datasheet

OSLON ${ }^{\circledR}$ Compact PL

KW CWLPM3.TK

Compact light source with improved heat dissipation and small z-tolerance ($+/-35 \mu \mathrm{~m}$). This special device in the OSLON Compact PL family combines the advantages of a ceramic package with outstanding efficiency.

Applications

- Headlamps, LED \& Laser \& Night Vision

Features

- Package: Ceramic package
- Chip technology: UX:3
- Typ. Radiation: 120° (Lambertian emitter)
- Color: Cx=0.312, Cy = 0.321 acc. to CIE 1931 (* white)
- Corrosion Robustness Class: 3A
- Qualifications: AEC-Q102 Qualified
- ESD: 8 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)
- Color over angle: Better than passus 3.7.2.1 of supplement proposal 7 to ECE reg. 128

Ordering Information

Type	Luminous Flux ${ }^{1)}$ $I_{F}=1000 \mathrm{~mA}$	Ordering Code
	Φ_{V}	

Maximum Ratings

Parameter	Symbol		Values
Operating Temperature ${ }^{2)}$	$\mathrm{T}_{\text {op }}$	min. max.	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & 135{ }^{\circ} \mathrm{C} \end{aligned}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	min. max.	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & 135^{\circ} \mathrm{C} \end{aligned}$
Junction Temperature	T_{j}	max.	$150{ }^{\circ} \mathrm{C}$
Junction Temperature for short time applications*	T ${ }_{\text {j }}$	max.	$175{ }^{\circ} \mathrm{C}$
Forward current $\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	I_{F}	min. max.	$\begin{array}{r} 50 \mathrm{~mA} \\ 1500 \mathrm{~mA} \end{array}$
Forward current pulsed $\mathrm{D}=0.005 ; \mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	$I_{\text {F pulse }}$	max.	1500 mA
Surge current $\mathrm{t} \leq 50 \mu \mathrm{~s} ; \mathrm{D}=0.025 ; \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	$I_{\text {FS }}$	max.	2000 mA
Surge current $\mathrm{t} \leq 10 \mu \mathrm{~s} ; \mathrm{D}=0.005 ; \mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	$I_{\text {FS }}$	max.	2500 mA
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)	$V_{\text {ESD }}$		8 kV
Reverse current ${ }^{\text {3) }}$	I_{R}	max.	200 mA

[^0]
Characteristics

$\mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA} ; \mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$

Parameter	Symbol		Values
Chromaticity Coordinate ${ }^{4)}$	Cx	typ.	0.312
	Cy	typ.	0.321
Viewing angle at $50 \% \mathrm{I}_{\mathrm{V}}$	2φ	typ.	120°
Forward Voltage ${ }^{5)}$$\mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$	V_{F}	min.	2.80 V
		typ.	3.20 V
		max.	3.40 V
Reverse voltage (ESD device)	$V_{\text {RESD }}$	min.	45 V
Reverse voltage ${ }^{3)}$ $I_{R}=20 \mathrm{~mA}$	V_{R}	max.	1.2 V
Real thermal resistance junction/solderpoint ${ }^{6)}$	$\mathrm{R}_{\text {thJs real }}$	typ.	4.6 K / W
		max.	5.6 K / W
Electrical thermal resistance junction/solderpoint ${ }^{6)}$	$\mathrm{R}_{\text {thJS elec. }}$	typ.	2.8 K / W
with efficiency $\eta_{e}=39 \%$		max.	3.4 K / W

Brightness Groups

Group	Luminous Flux ${ }^{1)}$ $I_{F}=1000 \mathrm{~mA}$ min. Φ_{v}	Luminous Flux ${ }^{1)}$ $I_{F}=1000 \mathrm{~mA}$ max. Φ_{v}
5S	410 lm	430 lm
6S	430 Im	460 Im
S7	460 Im	485 lm
S8	485 Im	510 Im
S9	510 Im	535 Im

Forward Voltage Groups

Group	Forward Voltage ${ }^{5)}$ $\mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$ min. V_{F}	Forward Voltage ${ }^{5)}$ $\mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$ \max. V_{F}
26	2.80 V	3.10 V
86	3.10 V	3.40 V

Chromaticity Coordinate Groups

Chromaticity Coordinate Groups ${ }^{4)}$

Group	Cx	Cy	Group	Cx	Cy	Group	Cx	Cy
4LO	0.3100	0.3065	5M0	0.3160	0.3261	7L0	0.3281	0.3428
	0.3100	0.3185		0.3160	0.3391		0.3281	0.3548
	0.3160	0.3306		0.3221	0.3512		0.3317	0.3620
	0.3160	0.3186		0.3221	0.3382		0.3342	0.3635
4M0	0.3100	0.3140	6L0	0.3221	0.3307		0.3342	0.3549
	0.3100	0.3270		0.3221	0.3427	7M0	0.3281	0.3503
	0.3160	0.3391		0.3281	0.3548		0.3281	0.3597
	0.3160	0.3261		0.3281	0.3428		0.3342	0.3635
5L0	0.3160	0.3186	6M0	0.3221	0.3382		0.3342	0.3624
	0.3160	0.3306		0.3221	0.3512			
	0.3221	0.3427		0.3254	0.3578			
	0.3221	0.3307		0.3281	0.3597			
				0.3281	0.3503			

Group Name on Label

Example: 5S-4L0-26

Relative Spectral Emission ${ }^{7)}$

$$
\Phi_{\text {rel }}=\mathrm{f}(\lambda) ; \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
$$

Radiation Characteristics ${ }^{7)}$

$I_{\text {rel }}=\mathrm{f}(\phi) ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Forward current ${ }^{7)}$
$\mathrm{I}_{\mathrm{F}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{F}}\right) ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Relative Luminous Flux ${ }^{7)}$, 8)
$\Phi_{V} / \Phi_{v}(1000 \mathrm{~mA})=\mathrm{f}\left(\mathrm{l}_{\mathrm{F}}\right) ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

$I_{F} / m A$

Chromaticity Coordinate Shift ${ }^{7)}$

$\Delta C x, \Delta C y=f\left(I_{F}\right) ; T_{J}=25^{\circ} \mathrm{C}$

Forward Voltage ${ }^{7)}$
$\Delta V_{F}=V_{F}-V_{F}\left(25^{\circ} \mathrm{C}\right)=f\left(T_{j}\right) ; I_{F}=1000 \mathrm{~mA}$

Relative Luminous Flux ${ }^{7}$

$\Phi_{V} / \Phi_{v}\left(25^{\circ} \mathrm{C}\right)=f\left(\mathrm{~T}_{\mathrm{j}}\right) ; \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$

Chromaticity Coordinate Shift ${ }^{7)}$

$\Delta C x, \Delta C y=f\left(T_{j}\right) ; I_{F}=1000 \mathrm{~mA}$

Max. Permissible Forward Current
$I_{\mathrm{F}}=\mathrm{f}(\mathrm{T})$

Dimensional Drawing 9)

lead finish Au WTVTLD
general tolerance ± 0.05

C63062-A4434-A1-03

Further Information:

Approximate Weight: $\quad 7.8 \mathrm{mg}$

Corrosion test:

ESD advice:
Class: 3A
Test condition: $40^{\circ} \mathrm{C} / 90 \% \mathrm{RH} / 15 \mathrm{ppm} \mathrm{H} \mathrm{S}$ / 14 days (stricter than IEC 60068-2-43)
The device is protected by ESD device which is connected in parallel to the Chip.

Electrical Internal Circuit

Recommended Solder Pad ${ }^{9)}$
\square foot print \qquad Cu area

$\square \Delta$ solder stencil

\triangle solder resist

Component Location on Pad

For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. Package not suitable for ultra sonic cleaning. To ensure a high solder joint reliability and to minimize the risk of solder joint cracks, the customer is responsible to evaluate the combination of PCB board and solder paste material for his application.

Reflow Soldering Profile

Product complies to MSL Level 2 acc. to JEDEC J-STD-020E

Profile Feature	Symbol	$\begin{array}{c}\text { Pb-Free }(\mathrm{SnAgCu}) \text { Assembly } \\ \text { Recommendation }\end{array}$		Unit
			2	3
Maximum				

All temperatures refer to the center of the package, measured on the top of the component

* slope calculation DT/Dt: Dt max. 5 s ; fulfillment for the whole T-range

Taping ${ }^{9)}$

C63062-A4434-B9-02

Tape and Reel ${ }^{10)}$

Reel Dimensions

	W	$\mathrm{N}_{\text {min }}$	W_{1}	$W_{2 \max }$	Pieces per PU
180 mm	$8+0.3 /-0.1 \mathrm{~mm}$	60 mm	$8.4+2 \mathrm{~mm}$	14.4 mm	4000

Barcode-Product-Label (BPL)

Dry Packing Process and Materials ${ }^{9)}$

[^1]
Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class moderate risk (exposure time 0.25 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.
Subcomponents of this device contain, in addition to other substances, metal filled materials. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers avoid device exposure to aggressive substances during storage, production, and use.

For further application related information please visit www.osram-os.com/appnotes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version on our website.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications
Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.
Our products are not qualified at module and system level for such application.
In case buyer - or customer supplied by buyer - considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer.

Glossary

1) Brightness: Brightness values are measured during a current pulse of typically 1 ms , with an internal reproducibility of $\pm 8 \%$ and an expanded uncertainty of $\pm 11 \%$ (acc. to GUM with a coverage factor of $\mathrm{k}=3$).
${ }^{2)}$ Operating Temperature: The Operating Temperatur Top is referenced to the Solderpoint Ts of this device. Proper current derating must be observed to maintain junction temperature below the maximum.
${ }^{3)}$ Reverse Operation: This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
2) Chromaticity coordinate groups: Chromaticity coordinates are measured during a current pulse of typically 1 ms , with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (acc. to GUM with a coverage factor of $\mathrm{k}=3$).
${ }^{5)}$ Forward Voltage: The forward voltage is measured during a current pulse of typically 1 ms , with an internal reproducibility of $\pm 0.05 \mathrm{~V}$ and an expanded uncertainty of $\pm 0.1 \mathrm{~V}$ (acc. to GUM with a coverage factor of $\mathrm{k}=3$).
${ }^{6}$) Thermal Resistance: Rth max is based on statistic values (6б).
${ }^{7}$) Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
${ }^{8)}$ Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
3) Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ± 0.1 and dimensions are specified in mm .
${ }^{10)}$ Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm .

Revision History

Version	Date	Change
1.0	$2022-03-11$	Initial Version

EU RoHS and China RoHS compliant product此产品符合欧盟 RoHS 指令的要求；
按照中国的相关法规和标准，
不含有毒有害物质或元素。

Published by ams－OSRAM AG

Tobelbader Strasse 30， 8141 Premstaetten，Austria
Phone＋43 3136 500－0
ams－osram．com
© All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Power LEDs - White category:
Click to view products by Osram manufacturer:

Other Similar products are found below :
LTW-K140SZR40 B42180-08 STW8Q2PA-R5-HA LTPL-P00DWS57 LTW-K140SZR30 LZP-D0WW00-0000 SZ5-M1-WW-C8-V1/V3FA LTW-K140SZR57 LTW-K140SZR27 BXRE-50C2001-C-74 MP-5050-8100-27-80 MP-5050-6100-65-80 MP-5050-6100-50-80 MP-5050-6100-40-80 MP-5050-6100-30-80 KW DPLS32.SB-6H6J-E5P7-EG-Z264 L1V1-507003V500000 KW DMLS33.SG-Z6M7-EBVFFCBB46-8E8G-700-S GW PSLT33.PM-LYL3-XX56-1-G3 ASMT-MW05-NMNS1 KW DPLS33.KD-HIJG-D30D144-HN-22C2-120-S KW DDLM31.EH-5J6K-A737-W4A4-140-R18 GW JTLRS1.CM-K1LW-XX57-1-100-Q-R33 KW DDLM31.EH-5J6K-A636-W4A4-140-R18 KW DDLM31.EH-5J6K-A131-W4A4-140-R18 GW PSLT33.PM-LYL3-XX57-1-G3 SML-LXL8047MWCTR/3 L2C5-40HG1203E0900 JB3030AWT-P-U27EA0000-N0000001 JK3030AWT-P-U30EA0000-N0000001 JK3030AWT-P-B40EB0000-N0000001 JK3030AWT-P-H30EB0000-N0000001 JK3030AWT-P-H40EB0000-N0000001 JK3030AWT-P-U27EB0000-N0000001 JK3030AWT-P-U30EB0000N0000001 XPGBWT-HE-0000-00JE5 GW JCLPS2.EM-H3H8-A131-1-65-2-R33 GW PUSTA1.PM-PAPC-XX53-1-1050-R18 GW CSSRM2.PM-N3N5-XX53-1 GW P9LMS1.EM-NRNU-30S7-0-200-R18 GW PSLPS1.EC-KSKU-5R8T-1 LTPL-M03614ZS50-F1 LTW2835SZK65 LTW-3030AQL40 LTW-3030AZL40-EU LTW-3030BSL42 LTW-3030DZL30 LTW-3030SZK40 LTW-3030SZK65 LTW5630AQL27

[^0]: * The median lifetime (L70/B50) for $\mathrm{Tj}=175^{\circ} \mathrm{C}$ is 100 h .

[^1]: Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.

