0.180" 8-Character 5×7 Dot Matrix

Serial Input Dot Addressable Intelligent Display ${ }^{\circledR}$ Devices

Lead (Pb) Free Product - RoHS Compliant

Red	SCE5780
Yellow	SCE5781
Super-red	SCE5782
Green	SCE5783
High Efficiency Green	SCE5784
Soft Orange	SCE5785
InGaAIP Red	SCE5786

DESCRIPTION

The SCE5780 (red), SCE5781 (yellow), SCE5782 (HER), SCE5783 (green), SCE5784 (HEG), SCE5785 (orange), and SCE5786 (InGaAIP red) are eight digit, dot addressable 5×7 dot matrix, serial input, Intelligent Display devices. The eight $4.57 \mathrm{~mm}(0.180$ ") high digits are packaged in a rugged, high quality, optically transparent, plastic 26 pin DIP with 7.62 mm (0.3") pin spacing.
The on-board CMOS has a 280 bit RAM, one bit associated with one LED, each to generate User Defined Characters.
The SCE578X is designed to work with the serial port of most common microprocessors. Data is transferred into the display through the Serial Data Input (DATA), clocked by the Serial Data Clock (SDCLK), and enabled by the Load Input (LOAD).

The Clock I/O (CLK I/O) and Clock Select (CLKSEL) pins offer the user the capability to supply a high speed external multiplex clock. This feature can minimize audio in-band interference for portable communication equipment or eliminate the visual synchronization effects found in high vibration environments such as avionic equipment. The prescaler function allows for a higher speed external multiplex clock when set to divide by 16 .

FEATURES

- Eight $4.57 \mathrm{~mm}\left(0.180^{\prime \prime}\right) 5 \times 7$ Dot Matrix Characters in Red, Yellow, Super-red, Green, High Efficiency Green, Soft Orange, or InGaAIP Red
- ROMless Serial Input, Dot Addressable Display Ideal for User Defined Characters
- Built-in Decoders, Multiplexers and LED Drivers
- Readable from 2.5 meters (8 Feet)
- Programmable Features:
- Clear Function
- Eight Dimming Levels
- Peak Current Select
- (12.5\% or Full Peak Current)
- Prescaler Function (External Oscillator Divided by 16 or 1)
- Internal or External Clock

Ordering Information

Type	Color of Emission	Character Height mm (inch)	Ordering Code
SCE5780	red	4.57 (0.180)	Q68000A9100
SCE5781	yellow		Q68000A9101
SCE5782	super-red		Q68000A9102
SCE5783	green		Q68000A9103
SCE5784	high efficiency green		Q68000A9104
SCE5785	soft orange		on request
SCE5786	InGaAIP Red		Q68000A1435

Package Outlines
Dimensions in mm (inch)

Pin 1

Tolerance: ± 0.25 (0.010) unless otherwise specified

IDOD5216

Maximum Ratings

Parameter	Symbol	Value	Unit
Operating temperature range ${ }^{1)}$	T_{op}	$-40 \ldots+85$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	$-40 \ldots+100$	${ }^{\circ} \mathrm{C}$
V_{CC}, Logic Supply Voltage (non-operating)	V_{CC}	-0.5 to +7.0	V
Input Voltage Levels Relative to GND		-0.5 to $V_{\mathrm{CC}}+0.5$	V
V_{LL}, LED Supply Voltage (non-operating)	V_{COL}	-0.5 to +5.5	V
Solder temperature	T_{S}	260	${ }^{\circ} \mathrm{C}$
1.59 mm (0.063") below seating plane, $\mathrm{t}<5.0 \mathrm{~s}$		85	$\%$
Relative Humidity at $85^{\circ} \mathrm{C}$		1.7	W
Power Dissipation at $70^{\circ} \mathrm{C}$		1.25	W
Power Dissipation at $85^{\circ} \mathrm{C}$	2.0	kV	
ESD (100 pF, $1.5 \mathrm{k} \Omega$)		100	mA
Input Current			

${ }^{1)}$ For operation at high temperature, see Thermal Considerations (page 10)

Optical Characteristics at $25^{\circ} \mathrm{C}$
($V_{\mathrm{LL}}=V_{\mathrm{CC}}=5.0 \mathrm{~V}$ at 100% brightness level, viewing angle: X axis $\pm 55^{\circ}, \mathrm{Y}$ axis $\pm 65^{\circ}$)

Description	Symbol	Values							Unit
		$\begin{array}{r} 0 \\ \stackrel{0}{1} \\ 8 \\ 80 \\ \boxed{0} 0 \\ \hline \end{array}$							
Luminous Intensity $\begin{gathered}\text { (min.) } \\ \text { (typ.) }\end{gathered}$	I_{V}	$\begin{aligned} & 37.5 \\ & 90.0 \end{aligned}$	$\begin{array}{r} 75 \\ 110 \end{array}$	$\begin{array}{r} 75 \\ 190 \end{array}$	$\begin{array}{r} 75 \\ 150 \end{array}$	$\begin{aligned} & 120 \\ & 215 \end{aligned}$	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	$\begin{aligned} & 375 \\ & 950 \end{aligned}$	$\mu \mathrm{cd} / \mathrm{dot}$ $\mu \mathrm{cd} / \mathrm{dot}$
Peak Wavelength (typ.)	$\lambda_{\text {peak }}$	660	585	630	565	568	610	645	nm
Dominant Wavelength (typ.)	$\lambda_{\text {dom }}$	639	583	626	570	574	605	632	nm

Notes:

1. Dot to dot intensity matching at 100% brightness is 1.8:1.
2. Display are binned for hue at 2.0 nm intervals for yellow, green, and high efficiency green.
3. Displays within a given intensity category have an intensity matching of 1.5:1 (max.)

Switching Specifications

(over operating temperature range and $V_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V)

Symbol	Description	Min.	Units
$T_{\text {RC }}$	Reset Active Time	600	ns
$T_{\text {LDS }}$	Load Setup Time	50	ns
$T_{\text {DS }}$	Data Setup Time	50	ns
$T_{\text {SDCLK }}$	Clock Period	200	ns
$T_{\text {SDCW }}$	Clock Width	70	ns
$T_{\text {LDH }}$	Load Hold Time	0	ns
$T_{\text {DH }}$	Data Hold Time	25	ns
$T_{\text {WR }}$	Total Write Time	2.2	$\mu \mathrm{~s}$
T_{BL}	Time Between Loads	600	ns

Note:
$T_{\text {SDCw }}$ is the minimum time the SDCLK may be low or high.
The SDCLK period must be a minimum of 200 ns .

Timing Diagram—Data Write Cycle

Timing Diagram—Instruction Cycle

Electrical Characteristics (over operating temperature)

Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{\text {CC }}$	4.5	5.0	5.5	V	-
$V_{\text {LL }}$	3.0	-	5.5	V	-
$\mathrm{I}_{\text {cC }}\left(\right.$ PWR DWN) ${ }^{\text {4) }}$	-	-	100	$\mu \mathrm{A}$	$V_{\mathrm{CC}}=V_{\mathrm{LL}}=5.0 \mathrm{~V}$, all inputs $=0 \mathrm{~V}$ or V_{CC}
$\underline{\text { lı }}$ (PWR DWN) ${ }^{4)}$	-	-	50	$\mu \mathrm{A}$	-
$I_{\text {cc }}$	-	-	2.0	mA	$V_{\text {CC }}=5.0 \mathrm{~V}$
ILL $(20 \text { dots/char })^{11) 2)}$	-	240	345	mA	$V_{\mathrm{CC}}=V_{\mathrm{LL}}=5.0 \mathrm{~V}$, "\#" displayed in 8 digits, brightness $=100 \%, I_{\mathrm{P}}=100 \%$ at $25^{\circ} \mathrm{C}$
$\underline{\text { IL }}$	-	-	-10	$\mu \mathrm{A}$	$V_{\text {cC }}=5.0 \mathrm{~V}$, all inputs $=0 \mathrm{~V}$
$\underline{I_{\text {IH }}}$	-	-	10	$\mu \mathrm{A}$	$V_{\text {CC }}=V_{\text {IN }}=5.0 \mathrm{~V}$ (all inputs)
$V_{\text {IH }}$	3.5	-	-	V	$V_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V
$V_{\text {IL }}$	-	-	1.5	V	$V_{\text {cC }}=4.5 \mathrm{~V}$ to 5.5 V
$\mathrm{IOH}^{\text {(CLK I/O) }}$	-	-8.9	-	mA	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, V_{\mathrm{OH}}=2.4 \mathrm{~V}$
IoL (CLK I/O)	-	1.6	-	mA	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, V_{\mathrm{OH}}=0.4 \mathrm{~V}$
$\theta^{\text {Jc-pin }}$	-	34	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-
Internal OSC Frequency	120	-	347	kHz	$V_{\text {CC }}=5.0 \mathrm{~V}, \overline{\mathrm{CLKSEL}}=1$, Prescale $=\div 1$
External OSC Frequency	120	-	347	kHz	$V_{\text {CC }}=5.0 \mathrm{~V}, \overline{\mathrm{CLKSEL}}=0$, Prescale $=\div 1$
External OSC Frequency with Prescale	1.92	-	5.55	MHz	$V_{\text {cC }}=5.0 \mathrm{~V}, \overline{\text { CLKSEL }}=0$, Prescale $=\div 16$
Mux Frequency ${ }^{3}$	375	768	1086	Hz	-

Notes:
${ }^{\text {1) }}$ Peak current $=1.87 \times I_{\mathrm{LL}} \times I_{\mathrm{LL}}$ varies with V_{LL} Normalized curve, Figure " I_{LL} Variance" (page 11).
${ }^{2)}$) Unused inputs must be tied high.
3) Mux rate=[OSC Frequency/(64 x 7)].
${ }^{4)}$ External oscillator must be stopped during power down mode for minimum current.

Input/Output Circuits

The following two figures show the input and output resistor/diode networks used for ESD protection and to eliminate substrate latch-up caused by input voltage over/under shoot.

Inputs

IDCD5021

Clock I/O

Top View

Pin Assignment

Pin	Function	Pin	Function
1	CLKSEL	14	Serial Data
2	$V_{\text {CC }}$ (Logic)	15	No connect
3	$V_{\text {LL }}$ (LED)	16	Serial CLK
4	No pin	17	No pin
5	No pin	18	No pin
6	No pin	19	No pin
7	No pin	20	No pin
8	No pin	21	No pin
9	No pin	22	No pin
10	No pin	23	No pin
11	Load	24	Reset
12	GND	25	CLK I/O
13	GND	26	No connect

Dot Matrix Format

Pin Definitions

Pin	Function	Definitions
1	$\overline{\text { CLKSEL }}$	H=internal clock, L=external clock
2	$V_{\text {CC }}$ (Logic)	Logic power supply
3	$V_{\text {LL }}$ (LED)	LED power supply
11	No pin	No pins in these positions
12,13	GND	Low input enables data clocking into the 8-bit serial shift register. When Load goes high, the contents of the 8-bit serial shift register will be decoded.
14	Serial Data	Power supply ground
15	No connect	Pin has nata input function
16	Serial CLK	For loading data into the 8-bit serial register on a low to high transition
$17-23$	No pin	No pins in these positions
24	Reset	Asynchronous input, when low will clear the Multiplex Counter, User RAM, and Data Regis- ter. Control Word Register is set to 100\% brightness, maximum peak current, and oscil- lator divided by 1. The display blanked.
26	No connect	Pin has no function
25	CLK I/O	Outputs master clock or input external clock for display multiplexing.

Display Column and Row Format

	C0	C1	C2	C3	C4
Row 0	1	1	1	1	1
Row 1	0	0	1	0	0
Row 2	0	0	1	0	0
Row 3	0	0	1	0	0
Row 4	0	0	1	0	0
Row 5	0	0	1	0	0
Row 6	0	0	1	0	0

1=Display dot "On" /// 0=Display dot "Off"

Column Data Ranges

Row 0	00 H to 1 FH
Row 1	00 H to 1 FH
Row 2	00 H to 1 FH
Row 3	00 H to 1 FH
Row 4	00 H to 1 FH
Row 5	00 H to 1 FH
Row 6	00 H to 1 FH

Block Diagram

Operation of the SCE578X

The SCE578X display consists of two CMOS ICs containing control logic and drivers for eight 5×7 characters. The first IC controls characters 0 through 3 and the second IC controls characters 4 through 7. These components are assembled in a compact plastic package.
Individual LED dot addressability allows the user great freedom in creating special characters or mini-icons.
The serial data interface provides a highly efficient interconnection between the display and the mother board. The SCE578X requires a minimum three input lines as compared to fourteen for an equivalent eight character parallel input part.
The on-board CMOS IC is the electronic heart of the display. Each IC accepts serially formatted data, which is stored in the internal RAM. The IC accepts data based on the character address selected. The first IC is selected when addressing characters 0 through 3, the second IC is selected when addressing characters 4 though 7, and both ICs are selected when the Control Word is addressed.
Asynchronously the RAM is read by the character multiplexer at a strobe rate that results in a flicker free display. The Block Diagram shows the three functional areas of the IC. These include: the input serial data register and control logic, a 140 bit two port RAM, and an internal multiplexer/display driver. The second IC is identical except characters 4 though 7 are driven.
The following explains how to format the serial data to be loaded into the display. The user supplies a string of bit mapped decoded
characters. The contents of this string is shown in Figure „Loading Serial Character Data" a (page 8). Figure „Loading Serial Character Data" b (page 8) shows that each character consist of eight 8 bit words. The first word encodes the display character location and the succeeding seven bytes are row data. The row data represents the status (On, Off) of individual column LEDs. Figure „Loading Serial Character Data" c (page 8) shows that each 8 bit word is formatted to represent Character Address, or Column Data.
Figure "Loading Serial Character Data" d (page 8) shows the sequence for loading the bytes of data. Bringing the $\overline{\text { LOAD }}$ line low enables the serial register to accept data. The shift action occurs on the low to high transition of the serial data clock (SDCLK). The least significant bit (DO) is loaded first. After eight clock pulses the LOAD line is brought high. With this transition the OPCODE is decoded. The decoded OPCODE directs D4-D0 to be latched in the Character Address register, stored in the RAM as Column data, or latched in the Control Word register. The control IC requires a minimum 600 ns delay between successive byte loads. As indicated in Figure „Loading Serial Character Data" a (page 8), a total of 512 bits of data are required to load all eight characters into the display.
The Character Address Register selects the character address that the row and column data will be written to. See Table „Load Character Adress" (page 9) for opcode and character addressing. After loading the Character Address Register, the next seven bytes load the column data, one row at a time, starting with row 0 (top row) and ending with row 6 (bottom row). Each character address has a 7×5 bit User RAM formatted as seven rows, each containing five
column data bits. The three most significant bits, D7-D5 represent the opcode for the row data and the least significant five bits, D4D0 represent the column data. See Table "Load Column Data"
(page 9) for the column data format. If an address is loaded before all seven rows are written, the next column data will be loaded into Row 0 of the new address. The remaining rows of the old address are not changed.
Table Charcater „D" (page 8) shows the Row Address for the example character, "D." Column data is written and read asynchronously from the 280 bit RAM. Once loaded, the internal oscillator and character multiplexer reads the data from the RAM. These characters are row strobed with column data as shown in Figures „Row and Column Locations for a Character ' $\mathrm{D}^{\prime \prime}$ (page 9) and „Row Strobing" (page 10). The character strobe rate is determined by the internal or user supplied external MUX Clock and the ICs $\div 320$ counter.

Character „D"

Row	Op code D7 D6		D5	$\begin{aligned} & \text { Col } \\ & \text { D4 } \\ & \text { C0 } \end{aligned}$	n D D3 C1	D2 C2	$\begin{aligned} & \text { D1 } \\ & \text { C3 } \end{aligned}$	$\begin{aligned} & \text { D0 } \\ & \text { C4 } \end{aligned}$	Hex
0	0	0	0	1	1	1	1	0	1E
1	0	0	0	1	0	0	0	1	11
2	0	0	0	1	0	0	0	1	11
3	0	0	0	1	0	0	0	1	11
4	0	0	0	1	0	0	0	1	11
5	0	0	0	1	0	0	0	1	11
6	0	0	0	1	1	1	1	0	1E

Loading Serial Character Data

Load Character Address

Op codeD7 D6 D5			Character Address					Hex	Operation Load
1	0	1	0	0	0	0	0	A0	Character 0
1	0	1	0	0	0	0	1	A1	Character 1
1	0	1	0	0	0	1	0	A2	Character 2
1	0	1	0	0	0	1	1	A3	Character 3
1	0	1	0	0	1	0	0	A4	Character 4
1	0	1	0	0	1	0	1	A5	Character 5
1	0	1	0	0	1	1	0	A6	Character 6
1	0	1	0	0	1	1	1	A7	Character 7

Load Column Data

Op code								
D7	D6	D5	Column Data			Di	Dperation	
0	0	0	C0	C1	C2	C3	C4	Row 0
0	0	0	C0	C1	C2	C3	C4	Row 1
0	0	0	C0	C1	C2	C3	C4	Row 2
0	0	0	C0	C1	C2	C3	C4	Row 3
0	0	0	C0	C1	C2	C3	C4	Row 4
0	0	0	C0	C1	C2	C3	C4	Row 5
0	0	0	C0	C1	C2	C3	C4	Row 6

The user can activate four Control functions. These include: LED Brightness Level, IC Power Down, Prescaler, or Display Clear. OPCODEs and six bit words are used to initiate these functions. The OPCODEs and Control Words for the Character Address and Loading Column Data are shown in Tables „Load Character Address" and „Load Column Data".
The user can select eight specific LED brightness levels, Tables "Display Brightness". Depending on how D3 is selected either one (1) for maximum peak current or zero (0) for 12.5% of maximum peak current in the control word per Table „Display Brightness", the user can select 16 specific LED brightness levels. These brightness levels (in percentages of full brightness of the display) depending on how the user selects D3 can be one (1) or zero (0) are as follows: 100% ($E 0_{\text {HEX }}$ or $E 8_{\text {HEX }}$), 53% ($E 1_{\text {HEX }}$ or $E 9_{\text {HEX }}$), 40% ($E 2_{\text {HEX }}$ or $E A_{\text {HEX }}$), 27\% ($E 3_{\text {HEX }}$ or EB HEX), 20\% ($E 4_{\text {HEX }}$ or $E C_{\text {HEX }}$), 13% ($E 5_{\text {HEX }}$ or ED HEX $_{\text {HEX }}$), and $6.6 \% ~\left(E 6_{\text {HEX }}\right.$ or $E E_{\text {HEX }}$), 0.0% ($E 7_{\text {HEX }}$ or $\mathrm{EF}_{\text {HEX }}$). The brightness levels are controlled by changing the duty factor of the row strobe pulse.
The SCE578X offers a unique Display Power Down feature which reduces $I_{\text {CC }}$ to less than 150 mA total. When $\mathrm{EF}_{\text {HEX }}$ is loaded (Table „Power Down") the display is set to 0% brightness. When in the Power Down mode data may still be written into the RAM. The display is reactivated by loading a new brightness Level Control Word into the display.

Display Brightness

| Op code
 D7 | D6 | | | D5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | D D | D3 | D2 | D1 | D0 | Hex | Operation
 Level | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |

Display Brightness

Op code D7 D6 D5			Control Word			D1	D0	Hex	Operation Level
1	1	1	0	1	0	0	0	E8	100\%
1	1	1	0	1	0	0	1	E9	53\%
1	1	1	0	1	0	1	0	EA	40\%
1	1	1	0	1	0	1	1	EB	27\%
1	1	1	0	1	1	0	0	EC	20\%
1	1	1	0	1	1	0	1	ED	13\%
1	1	1	0	1	1	1	0	EE	6.6\%
1	1	1	0	1	1	1	1	EF	0.0\%

Power Down

Row and Column Locations for a Character "D"

Row 0	Off LED
Row 1	On LED
Row 2	Previously "on" LED
Row 3	
Row 4	
Row 5	
Row 6	
	IDXX5191

Row Strobing

The SCE578X allows a high frequency external oscillator source to drive the display. Data bit, D4, in the control word format controls the prescaler function. The prescaler allows the oscillator source to be divided by 16 by setting D4=1. However, the prescaler should not be used, i.e., when using the internal oscillator source.
The Software Clear ($\mathrm{CO}_{\text {HEX }}$), given in Table „Software Clear", clears the Address Register and the RAM. The display is blanked and the Character Address Register will be set to Character 0. The internal counter and the Control Word Register are unaffected. The Software Clear will remain active until the next data input cycle is initiated.

Software Clear

Op code	Control Word						Hex	Operation	
D7	D6	D5	D4	D3	D2	D1	D0		
1	1	0	0	0	0	0	0	C0	CLEAR

Multiplexer and Display Driver

The eight characters are row multiplexed with RAM resident column data. The strobe rate is established by the internal or external MUX Clock rate. The MUX Clock frequency is divided by a 320 counter chain. This results in a typical strobe rate of 768 Hz . By pulling the Clock SEL line low, the display can be operated from an external MUX Clock. The external clock is attached to the CLK I/O connection.
An asynchronous hardware Reset (pin 24) is also provided. Bringing this pin low will clear the Character Address Register, Control Word Register, RAM, and blanks the display. This action leaves the display set at Character Address 0 , and the Brightness Level set at 100%, prescaler $\div 1$.

Electrical and Mechanical Considerations Thermal Considerations

The display's power usage may need to be reduced to operate at high ambient temperatures. The power may be reduced by lowering the brightness level, reducing the total number of LEDs illuminated, or lowering $V_{\text {LED }}$. The $V_{\text {CC }}$ supply, relative to the $V_{\text {LED }}$ supply, has little effect on the power dissipation of the display and is not considered when determining the power dissipation.

To determine the power deration with a given ambient temperature, use the following formula:
$\mathrm{T}_{\mathrm{jmax}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{D}} \cdot \theta_{\mathrm{ja}}$
where: $\quad T_{\text {jmax }}=$ maximum IC junction temperature
$\mathrm{P}_{\mathrm{D}}=$ power dissipated by the ICs
$\theta_{\mathrm{ja}}=$ thermal resistance, junction to ambient
To determine the power dissipation of the display, use the following formula:
$\mathrm{PD}=\mathrm{N} \cdot \mathrm{I}_{\mathrm{LL}} / 140 \cdot \mathrm{RB}$
where: $\quad \mathrm{N}=$ number of LEDs on
IL/ $140=$ average current for a single LED
$R B=r e l a t i v e ~ b r i g h t n e s s ~ l e v e l ~$
A typical thermal resistance value $\left(\theta_{\mathrm{ja}}\right)$ for this display is $50^{\circ} \mathrm{C} / \mathrm{W}$ when mounted in a socket soldered on a 1.57 mm ($0.062^{\prime \prime}$) thick PCB with $0.5 \mathrm{~mm}(0.020$ "), 1 ounce copper traces and the display covered by a plastic filter. The display's maximum IC junction temperature is $125^{\circ} \mathrm{C}$. Power Deration Curve is based on these typical values.
Power Deration Curve ($\theta_{\mathrm{ja}}=50^{\circ} \mathrm{C} / \mathrm{W}$)

V_{CC} and V_{LL} are two separate power supplies sharing a common ground. V_{CC} supplies power for all the display logic. V_{LL} supplies the power for the LEDs. By separating the two supplies, $V_{C C}$ and V_{LL} can be varied independently and keeps the logic supply clean.
V_{LL} can be varied between 3.0 V and 5.5 V . The LED drive current will vary with changes in V_{LL}. See Figure "IL variance":
$I_{\text {LL }}$ Variance

V_{CC} can vary between 4.5 V and 5.5 V . Operation below 4.5 V will change the timing and switching levels of the inputs.

Interconnect Considerations

Optimum product performance can be had when the following electrical and mechanical recommendations are adopted. The SCE578X's IC is constructed in a high speed CMOS process; consequently high speed noise on the SERIAL DATA, SERIAL DATA CLOCK, LOAD and RESET lines may cause incorrect data to be written into the serial shift register. Adhere to transmission line termination procedures when using fast line drivers and long cables ($>10 \mathrm{~cm}$).
Good ground and power supply decoupling will insure that $I_{\text {CC }}$ ($<800 \mathrm{~mA}$ peak) switching currents do not generate localized ground bounce. Therefore it is recommended that each display package use a $0.1 \mu \mathrm{~F}$ and $20 \mu \mathrm{~F}$ tantulum capacitor between V_{CC} and ground.
When the internal MUX Clock is being used connect the CLKSEL pin to $V_{\text {cc }}$. In those applications where RESET will not be connected to the system's reset control, it is recommended that this pin be connected to the center node of a series $0.1 \mu \mathrm{~F}$ and $100 \mathrm{k} \Omega$ RC network. Thus upon initial power up the RESET will be held low for 10 ms allowing adequate time for the system power supply to stabilize.

ESD Protection

The input protection structure of the SCE578X provides significant protection against ESD damage. It is capable of withstanding discharges greater than 2.0 kV . Take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with unshielded parts. If these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in antistatic packaging.

Soldering Considerations

The SCE578X can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resin-based RMA flux without alcohol can be used.
Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec . to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$ for five seconds at $1.59 \mathrm{~mm}\left(0.063^{\prime \prime}\right)$ below the seating plane. The packages should not be immersed in the wave.

Post Solder Cleaning Procedures

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Exercise care in choosing solvents as some may chemically attack the nylon package. For further information refer to Appnotes 18 and 19.
An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 14 pin DIP sockets 7.62 mm ($0.300^{\prime \prime}$) wide with $2.54 \mathrm{~mm}(0.100$ ") centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardward, New Albany, IN.
For further information refer to Appnote 22.

Optical Considerations

The 4.57 mm (0.180 ") high character of the SCE578X gives readability up to five feet. Proper filter selection enhances readability over this distance.
Using filters emphasizes the contrast ratio between a lit LED and the character background. This will increase the discrimination of different characters. The only limitation is cost. Take into consideration the ambient lighting environment for the best cost/benefit ratio for filters.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are an inexpensive and effective way to strengthen contrast ratios. The SCE5780 is a red display and should be used with long wavelength pass filter having a sharp cut-off in the 600 nm to 620 nm range. The SCE5782 is a super-red display and should be used with long wavelength pass filter having a sharp cut-off in the 570 nm to 600 nm range. The SCE5784 is a high efficiency green display and should be used with long wavelength pass filter that peaks at 565 nm . The SCE5785 is a soft orange display and should be used with long wavelength pass filter that peaks at 610 nm . The SCE5786 is an InGaAIP red display and should be used with long wavelength pass filter that peaks at 645 nm .
Additional contrast enhancement is gained by shading the displays. Plastic band-pass filters with built-in louvers offer the next step up in contrast improvement. Plastic filters can be improved further with anti-reflective coatings to reduce glare. The trade-off is fuzzy characters. Mounting the filters close to the display reduces this effect. Take care not to overheat the plastic filter by allowing for proper air flow.
Optimal filter enhancements are gained by using circular polar-
ized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1.0%.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY, Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing displays and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.-Atlas, Van Nuys, CA.

Microprocessor Interface

The microprocessor interface is through the serial port, SPI port or one out of eight data bits on the eight bit parallel port and also control lines SDCLK and LOAD.

Power Up Sequence

Upon power up display will come on at random. Thus the display should be reset at power-up. The reset will set the Address Register to Digit 0, User RAM is set to 0 (display blank) the Control Word is set to 0 (100% brightness) and the internal counters are reset.

Loading Data into the Display

Use following procedure to load data into the display:

1. Power up the display.
2. Bring $\overline{\mathrm{RST}}$ low (600 ns duration minimum) to clear the Multiplex Counter, Address Register, Control Word Register, User Ram and Data Register. The display will be blank. Display brightness is set to 100%.
3. If a different brightness is desired, load the proper brightness opcode into the Control Word Register.
4. Load the Digit Address into the display.
5. Load display row and column data for the selected digit.
6. Repeat steps 4 and 5 for all digits.

Data Contents for the Word „ABCDEFGH"

Display Interface to Siemens/Intel 8031
Microprocessor (using serial port in mode 0)

Display Interface to Siemens/Intel 8031

Microprocessor (using one bit of parallel port as serial port)

Display Interface with Motorola 68HC05C4
Microprocessor (using SPI port)

Cascading Multiple Displays

Multiple displays can be cascaded using the CLKSEL and CLK I/O pins (Figure „Cascading Multiple Display"). The display designated as the MasterClock source should have its CLKSEL pin tied high and the slaves should have their CLKSEL pins tied low. All CLK I/O pins should be tied together. One display CLK I/O can drive 15 slave CLK I/Os. Use RST to synchronize all display counters.

二9ㅇ¢교88	ठい ${ }_{\text {¢ }}$		888명ㅅ		すこす古コニ市	－	吊すごへコ号	吊三二吊三二吊	吊 $\vec{\omega}$		8888888	吊三二串89	우여휴⼱으8	少二99888		砤	
		$\left\lvert\, \begin{gathered} * * * * * \\ \bullet * * \end{gathered}\right.$	－＊\％			＊＊＊＊＊＊＊	$\underbrace{*}_{0}+{ }^{*}$	${ }^{* *}{ }^{* *}{ }^{*}$	${ }_{*-\infty}^{*}{ }_{*}^{*}$	－＊		${ }_{*}^{*} \begin{array}{lll} * & * & \\ * & 0 & \\ \hline \end{array}$			$\overbrace{*}^{*} \%_{0}$		
	앟⼆ㅠㅠ88	吊里里88里8	8心忒吊88	ㅇ⽊99ㅇㄱ	8心いコニコ吊	98999995	三二コ泀三吊	8스은⼆吊				吊コニコニ89		9バ心べづ8	吊三二89889	哃	
	${ }^{* *}{ }^{* *}$	＊＊＊＊	${ }^{* *}$		$\begin{aligned} & * * * * \\ & * * * * * * \\ & 0 \end{aligned}$	：＊＊＊＊＊		* **	＊＊＊＊＊＊		＊＊＊＊＊＊		${ }_{*}^{+}+\dot{\theta}^{\circ}$		$*^{* *} \cdot *$		
						앺ㅇㅇ으으으의	市三二南三耍	8888888		89우눙ㅇ	88888；	吊三二三898	市号ココニコ吊	吊こ二泀コニ吊		m	
$\begin{array}{ll} \hline & \\ 0 & \\ 0 & \\ \hline \end{array}$			${ }^{\circ 0^{\circ} e^{\circ}}$					＊＊＊＊									
	市으우뭉		吊三する	우오오옹ㄱ	吊三으유후유			¢ํ8888	吊三으으우유	8여오뀨옹			三二云二吊8品		\＃$\vec{\omega}_{\text {ज }}$	8鿬	
＊＊＊＊＊	＊＊＊				θ^{*}		:	＊＊＊\％	$:_{0}^{*}:$	$\cdots{ }_{0}^{\circ}+$	$+\theta_{0}^{*}+\theta_{0}^{*}$				$\begin{array}{ccc} * & * & \\| \\ \bullet * & 8 \\ \bullet & * & \vdots \end{array}$		
			유⼆厶ぃ 8 오으오	8오셔이이		方するするすす	市三味			ప¢ ${ }_{\text {¢ }}$			8心忒吊8品	훙8888		8제	
＊＊＊＊＊＊＊	－0．80\％	＊＊＊＊＊＊＊			＊＊＊＊＊＊	＊＊＊＊＊＊				＊＊${ }^{\circ}$		- ©		＊＊＊＊＊			
	ठいこコニ88	こ二さぴア88	吊す示三吊88		吊三コニコニ	三二可いいい				888ㄲ888		88而品乐べ	三二云二吊89	39895吊ㅇ8	ロべへべ888	吊	
$\bullet * *$	$+{ }^{* * *}$		*	$\text { © }+\cdots{ }^{\circ}$		$\left\|\begin{array}{cccc} \bullet & * & * \\ & \bullet & * \\ \bullet & * & * & * \end{array}\right\|$		：	${ }_{0}^{0}$	：		＊＊＊＊		$\begin{aligned} & * * * * \\ & * * * * \end{aligned}$	${ }^{-\infty}{ }^{+\infty}$		
88ペ¢088	오 $= \pm \pm 88$	\＃二さぁぁ88			웅¢ㄱ⼆示	$\pm \pm \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\text { ¢ }}$－$\pm$	すすすेतすす		吊三二耑詔号	8888888			8へべべ吊8		すい三のへへへ	踊	
			$\cdots \bullet \bullet$	$+\infty * *$						：			$\begin{array}{llll} * & * & \bullet \\ * & * & * & \bullet \end{array}$	${ }^{* * *} \%$	$\left\lvert\, \begin{gathered} * * * * * \\ * * * * \end{gathered}\right.$		
	¢ いいいここ88	吊三こ二吊88	오윢⼆유88	\＃888888	二市いいこ二三	吊三二三コニ吊				8\％品乐只으	8888웃		吊三コニ三吊里		吊三二岸只品里	8즂	
		${ }^{* * *}$			$\begin{aligned} & \bullet \bullet * * * * * \\ & \bullet * * * * * * \end{aligned}$		${ }_{*}^{\circ}+\cdots *$		\cdots＊！		＊＊＊				${ }^{* *} * * *$		

Revision History: 2006-01-23
Previous Version: 2005-01-10

Page	Subjects (major changes since last revision)	Date of change
all	Lead free device	$2006-01-23$

Published by
OSRAM Opto Semiconductors GmbH
Wernerwerkstrasse 2, D-93049 Regensburg
www.osram-os.com
© All Rights Reserved.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.
If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ${ }^{1)}$ may only be used in life-support devices or systems ${ }^{2)}$ with the express written approval of OSRAM OS.
${ }^{1)}$ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
${ }^{2)}$ Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Displays \& Accessories category:
Click to view products by OSRAM manufacturer:

Other Similar products are found below :
LTC-2721WC LTC-4624JD LTC-4627WC LTC-571P LTD-5021AWC LTM-8522G LTP-4323P LTP-747G LTS-3361JG-06 ELS-316SYGWA/S530-E2 1668 HT-F196NB-5323 IPD2131-27 SA03-12EWA LDQ-N514RI LDS-A3506RD LDS-A3926RI SC03-12HDB SIB9T151550WW SI-B9V171550WW SLC-3PF-WL SLDN-32M-G 1624 LTC-2623WC LTC-4627JD LTD-322G LTD-482PC LTP1057AHR LTP-1457AKR LTP-3784G-01 LTS-313AP LTS-4812SKR-P LTS-547AE LTS-6780P 446010401-3 HV-7W30-6829 DA4311GWA LDD-A516RI-17 LDD-E305RI LDQ-N3402RI LDQ-N3606RI LDT-M2804RI 86004CB830 LTP-3862JD LTP-2088AKD LTD6740P LTS-6880Y LDS-SMC3002RISUGTR LTC-2623E CC25-12YWA

