# SFH 4246R

#### **TOPLED® Reverse Gullwing Lens**

Infrared Emitter (940 nm) - 24 °





### **Applications**

- Electronic Equipment
- Gesture Recognition

 Industrial Automation (Machine Controls, Light Barriers, Vision Controls)

#### Features:

- Corrosion Robustness Class: 3B.
- Qualifications: The product qualification test plan is based on the guidelines of AEC-Q102, failure mechanism based Stress Test Qualification for Discrete Optoelectronic Semiconductors in Automotive applications.
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)
- Highly Efficient Infrared LED
- Short switching times
- Centroid wavelength 940 nm

## **Ordering Information**

| Туре      | Radiant intensity 1)2)                    | Radiant intensity 1) typ.                               | Ordering Code |
|-----------|-------------------------------------------|---------------------------------------------------------|---------------|
|           | $I_{\rm F}$ = 100 mA; $t_{\rm p}$ = 20 ms | $I_{\rm F} = 100 \text{ mA}; t_{\rm p} = 20 \text{ ms}$ |               |
|           | l<br>e                                    | l<br>e                                                  |               |
| SFH 4246R | 71 180 mW/sr                              | 100 mW/sr                                               | Q65112A8834   |



|      |     | D (1)  |   |
|------|-----|--------|---|
| Maxi | mum | Rating | S |

| T,  | = | 25 | $^{\circ}C$ |
|-----|---|----|-------------|
| · ^ |   | 20 | $\sim$      |

| 1 <sub>A</sub> - 23 0                         |                  |      |        |
|-----------------------------------------------|------------------|------|--------|
| Parameter                                     | Symbol           |      | Values |
| Operating temperature                         | T <sub>op</sub>  | min. | -40 °C |
|                                               | ор               | max. | 100 °C |
| Storage temperature                           | T <sub>stg</sub> | min. | -40 °C |
|                                               | Sig              | max. | 100 °C |
| Forward current                               | I <sub>F</sub>   | max. | 100 mA |
| Surge current                                 | I                | max. | 1 A    |
| $t_p \le 200 \ \mu s; \ D = 0.005$            | 1 0.00           |      |        |
| Reverse voltage 3)                            | $V_R$            | max. | 5 V    |
| Power consumption                             | P <sub>tot</sub> | max. | 170 mW |
| ESD withstand voltage                         | V <sub>ESD</sub> | max. | 2 kV   |
| acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2) | LOD              |      |        |

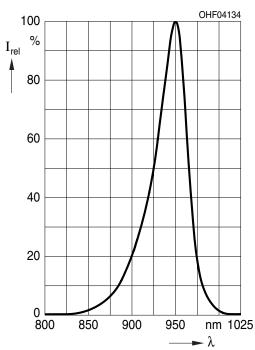


## **Characteristics**

 $I_{_{\rm F}}$  = 100 mA;  $t_{_{
m p}}$  = 20 ms;  $T_{_{
m A}}$  = 25 °C

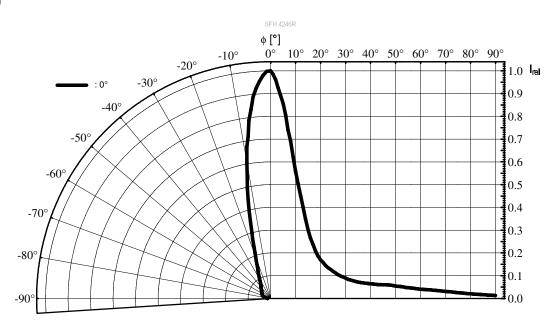
| Parameter                                                               | Symbol                     |              | Values               |
|-------------------------------------------------------------------------|----------------------------|--------------|----------------------|
| Peak wavelength                                                         | $\lambda_{peak}$           | typ.         | 950 nm               |
| Centroid wavelength                                                     | $\lambda_{	ext{centroid}}$ | typ.         | 940 nm               |
| Spectral bandwidth at 50% I <sub>rel,max</sub> (FWHM)                   | Δλ                         | typ.         | 42 nm                |
| Half angle                                                              | φ                          | typ.         | 12 °                 |
| Dimensions of active chip area                                          | LxW                        | typ.         | 0.3 x 0.3<br>mm x mm |
| Rise time (10% / 90%)<br>$I_F = 100 \text{ mA}; R_L = 50 \Omega$        | t,                         | typ.         | 12 ns                |
| Fall time (10% / 90%) $I_F = 100 \text{ mA}; R_L = 50 \Omega$           | t <sub>f</sub>             | typ.         | 12 ns                |
| Forward voltage 4)                                                      | $V_{F}$                    | typ.<br>max. | 1.40 V<br>1.70 V     |
| Forward voltage $^{4)}$ I <sub>F</sub> = 1 A; t <sub>p</sub> = 100 µs   | $V_{F}$                    | typ.<br>max. | 2.3 V<br>2.9 V       |
| Reverse current <sup>3)</sup> V <sub>R</sub> = 5 V                      | I <sub>R</sub>             | typ.<br>max. | 0.01 μA<br>10 μA     |
| Radiant intensity $^{1)}$ I <sub>F</sub> = 1 A; t <sub>p</sub> = 100 µs | l <sub>e</sub>             | typ.         | 750 mW/sr            |
| Total radiant flux 5)                                                   | Фе                         | typ.         | 65 mW                |
| Temperature coefficient of voltage                                      | $TC_{V}$                   | typ.         | -1.3 mV / K          |
| Temperature coefficient of brightness                                   | TC,                        | typ.         | -0.5 % / K           |
| Temperature coefficient of wavelength                                   | $TC_{\lambda}$             | typ.         | 0.3 nm / K           |
| Thermal resistance junction solder point real 6)                        | $R_{	ext{thJS real}}$      | max.         | 200 K / W            |
| Thermal resistance junction ambient real                                | $R_{thJA}$                 | max.         | 450 K / W            |




# **Brightness Groups**

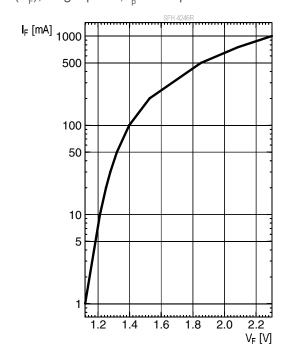
| Group | Radiant intensity 1)2)                      | Radiant intensity 1)2)                      |  |
|-------|---------------------------------------------|---------------------------------------------|--|
|       | $I_F = 100 \text{ mA}; t_p = 20 \text{ ms}$ | $I_F = 100 \text{ mA}; t_p = 20 \text{ ms}$ |  |
|       | min.                                        | max.                                        |  |
|       | l <sub>e</sub>                              | l <sub>e</sub>                              |  |
| V     | 71 mW/sr                                    | 112 mW/sr                                   |  |
| AW    | 112 mW/sr                                   | 180 mW/sr                                   |  |

Only one group in one packing unit (variation lower 2:1).


# Relative Spectral Emission 7), 8)

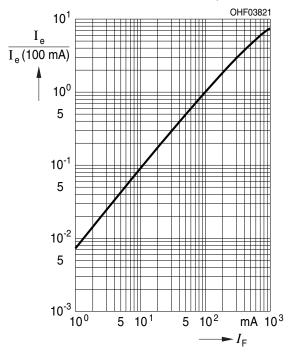
 $I_{\rm e,rel}$  = f ( $\lambda$ );  $I_{\rm F}$  = 100 mA;  $t_{\rm p}$  = 20 ms




#### Radiation Characteristics 7), 8)

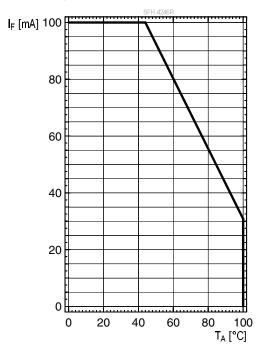
$$I_{e,rel} = f(\phi)$$




#### Forward current 7), 8)

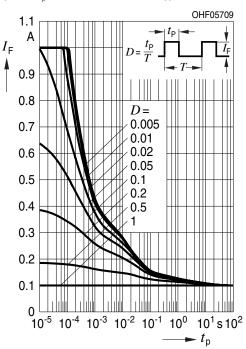
 $I_F = f(V_F)$ ; single pulse;  $t_D = 100 \mu s$ 




# Relative Radiant Intensity 7), 8)

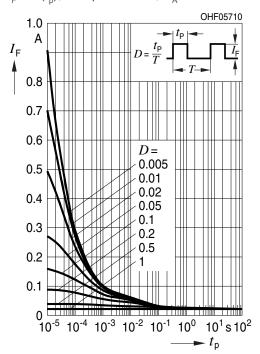
 $I_e/I_e(100\text{mA}) = f(I_F)$ ; single pulse;  $t_p = 100 \mu\text{s}$ 



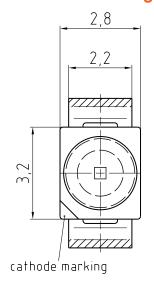

#### Max. Permissible Forward Current

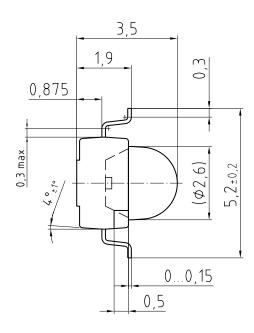
$$I_{F,max} = f(T_A); Rth_{ja} = 450K/W$$

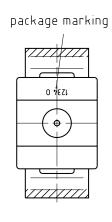



### **Permissible Pulse Handling Capability**

$$I_F = f(t_p)$$
; D = parameter;  $T_A = 25$ °C





# Permissible Pulse Handling Capability


$$I_F = f(t_p)$$
; D = parameter;  $T_A = 85$ °C



# **Dimensional Drawing** 9)



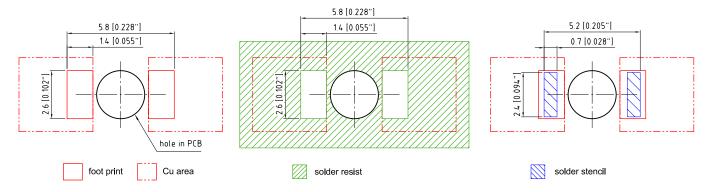




general tolerance ± 0.1 lead finish Sn

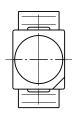
C63062-A4408-A1-04

### **Further Information:**


**Approximate Weight:** 36.0 mg

Corrosion test: Class: 3B

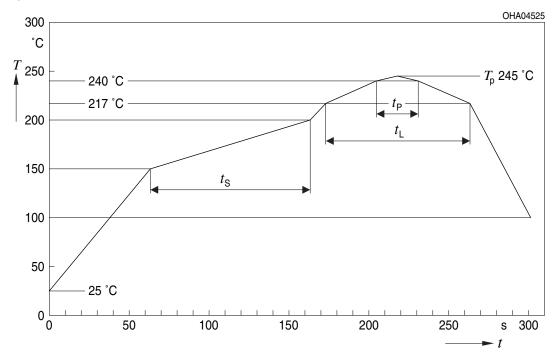
Test condition: 40°C / 90 % RH / 15 ppm H<sub>2</sub>S / 14 days (stricter than IEC


60068-2-43)

## Recommended Solder Pad 9)



Component Location on Pad



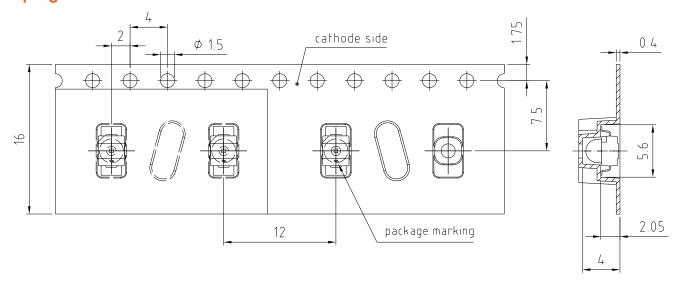



E062.6183.02 -02

## **Reflow Soldering Profile**

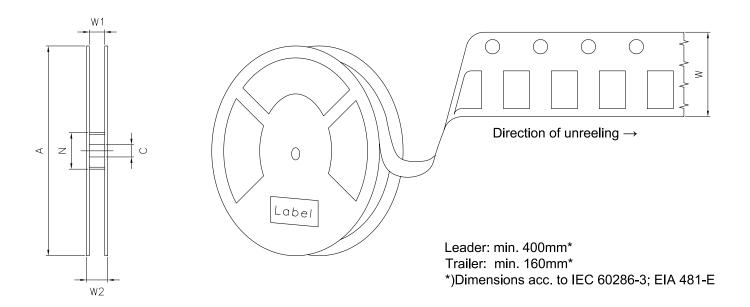
Product complies to MSL Level 2 acc. to JEDEC J-STD-020E




| Profile Feature                                                         | Symbol                     | Pb-Free (S | nAgCu) Assembly |         | Unit |
|-------------------------------------------------------------------------|----------------------------|------------|-----------------|---------|------|
|                                                                         |                            | Minimum    | Recommendation  | Maximum |      |
| Ramp-up rate to preheat*)                                               | '                          |            | 2               | 3       | K/s  |
| 25 °C to 150 °C                                                         |                            |            |                 |         |      |
| Time t <sub>s</sub>                                                     | $t_s$                      | 60         | 100             | 120     | S    |
| $T_{Smin}$ to $T_{Smax}$                                                |                            |            |                 |         |      |
| Ramp-up rate to peak*)                                                  |                            |            | 2               | 3       | K/s  |
| $T_{Smax}$ to $T_{P}$                                                   |                            |            |                 |         |      |
| Liquidus temperature                                                    | $T_{L}$                    |            | 217             |         | °C   |
| Time above liquidus temperature                                         | $t_{\scriptscriptstyle L}$ |            | 80              | 100     | S    |
| Peak temperature                                                        | $T_{P}$                    |            | 245             | 250     | °C   |
| Time within 5 °C of the specified peak temperature T <sub>P</sub> - 5 K | t <sub>P</sub>             | 10         | 20              | 30      | S    |
|                                                                         |                            |            | 3               | 4       | K/s  |
| Ramp-down rate* $T_p$ to 100 °C                                         |                            |            | J               | 4       | rv5  |
| Time                                                                    |                            |            |                 | 480     | S    |
| 25 °C to T <sub>P</sub>                                                 |                            |            |                 |         |      |

All temperatures refer to the center of the package, measured on the top of the component




<sup>\*</sup> slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

# Taping 9)

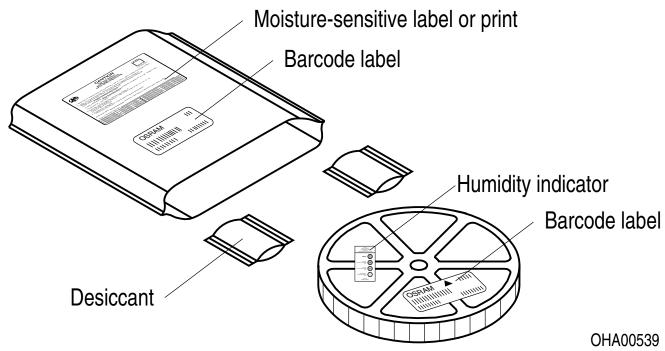


C67062-A0307-B1-03

# Tape and Reel 10)



### **Reel Dimensions**


| Α      | W                   | $N_{\min}$ | W <sub>1</sub> | $W_{2  \text{max}}$ | Pieces per PU |
|--------|---------------------|------------|----------------|---------------------|---------------|
| 330 mm | 12 + 0.3 / - 0.1 mm | 60 mm      | 12.4 + 2 mm    | 18.4 mm             | 1200          |



#### **Barcode-Product-Label (BPL)**



# Dry Packing Process and Materials 9)



Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.



#### **Notes**

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class exempt group (exposure time 10000 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

For further application related information please visit www.osram-os.com/appnotes



#### **Disclaimer**

#### Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on the OSRAM OS website.

#### **Packing**

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

#### Product and functional safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

OSRAM OS products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using OSRAM OS components in product safety devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and buyer and /or customer will analyze and coordinate the customer-specific request between OSRAM OS and buyer and/or customer.



#### Glossary

- Radiant intensity: Measured at a solid angle of  $\Omega = 0.01 \text{ sr}$
- 2) **Brightness:** The brightness values are measured with a tolerance of ±11%.
- Reverse Operation: This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
- Forward Voltage: The forward voltages are measured with a tolerance of ±0.1 V.
- <sup>5)</sup> **Total radiant flux:** Measured with integrating sphere.
- Thermal resistance: junction soldering point, of the device only, mounted on an ideal heatsink (e.g. metal block)
- Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- <sup>8)</sup> **Testing temperature:** TA = 25°C (unless otherwise specified)
- Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- <sup>10)</sup> **Tape and Reel:** All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.



#### SFH 4246R

| Revision | n History  |                       |
|----------|------------|-----------------------|
| Version  | Date       | Change                |
| 1.0      | 2020-08-14 | Initial Version       |
| 1.1      | 2020-09-01 | Applications Features |



Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。





# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Infrared Emitters - High Power category:

Click to view products by Osram manufacturer:

Other Similar products are found below:

TSHA6201 TSHA6202 SFH 4030 SFH 4060 SFH 4775S A01 SST-10-IRD-B90H-S810 SFH 4726AS SFH 4717AS SFH 4725AS

VSMY2853SLX01 VSMY2853RGX01 VSMY2853GX01 VSMY2850GX01 IN-P281ASGHIR IN-P281ASGIR VSMY2890GX01

VSMY2890RGX01 SFH 4728AS A01 SST-10-IRD-B130H-S940 SST-10-IRD-B50H-S940 QEE123 TSHA6200 TSML1030 VTE1291W
2H LL-304IRC4B-2AD LL-503HIRT2E-1CC LL-503IRC2E-2AC LL-503IRC2V-2AD LL-503IRT2E-2AC LL-503IRT2E-2AE LL
503SIRC2E-1BD LL-503SIRC2H-1BE SFH 4259 SFH 4656-Z OS5RKAZ5D1P OSB56LZE31D OSG58AZ5D1P OSI3CA5111A

OSI3NAS1C1A OSI5XNE3E1E OSIXCA5121A OSIXCAS1C1A OSM54LZ5D1P OSM5D3Z2C1P OSMR43Z2C1P OSO5PAZ161D

OSOR7161D OSPW7161D OSPW71B1P OSR5PAZE31D