Panasonic ideas for life

COMPACT SLIM
TWIN AND SINGLE TYPE AUTOMOTIVE RELAY

FEATURES

- It is extremely compact at approx. 2/3 the size of previous products. Compared to our previous miniature type CT relay, both the 1 Form C and 10-pin and 8-pin twin types take up approx. two-thirds the space and volume. This makes them ideal for relay unit miniaturization.
- Compact and high-capacity 25 A load switching
High capacity control is possible while being compact and capable of motor lock load switching at $25 \mathrm{~A}, 14 \mathrm{~V}$ DC.
- Pin in Paste* compatible model added
Models compatible with the recently increasing Pin in Paste technique (reflow solder mounting) have been added.
Pin in Paste compatible models are the flux tight type.
* The Pin in Paste method may sometimes be referred to as THR (Through-hole Reflow).
- Environmental protection specifications
Cadmium-free contacts and use of leadfree solder are standard. Environmental pollutants are not used.

TYPICAL APPLICATIONS

- Powered windows
- Automatic door locks
- Electrically powered mirrors
- Powered sunroofs
- Powered seats
- Lift gates
- Smart J/B related products, etc.

ORDERING INFORMATION

Contact arrangement
1: 1 Form C
2: 1 Form $\mathrm{C} \times 2$ (8 terminal)
5: 1 Form C $\times 2$ (10 terminal)
Pick-up voltage
1: Max. 6.5 V DC
2: Max. 7.2 V DC
Coil voltage, DC
12: 12 V
Mounting type
Nil: Standard type
P: Pin in Paste available type

TYPES

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Part No.	
			Standard type	Pin in Paste type
1 Form C	12 V DC	Max.6.5 V DC (Initial)	ACJ1112	ACJ1112P
		Max.7.2 V DC (Initial)	ACJ1212	ACJ1212P
1 Form $\mathrm{C} \times 2$ (8 terminal)		Max.6.5 V DC (Initial)	ACJ2112	ACJ2112P
		Max.7.2 V DC (Initial)	ACJ2212	ACJ2212P
1 Form $\mathrm{C} \times 2$ (10 terminal)		Max.6.5 V DC (Initial)	ACJ5112	ACJ5112P
		Max.7.2 V DC (Initial)	ACJ5212	ACJ5212P

[^0]
CJ (ACJ)

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range*
12 V DC	Max. 7.2 V DC (Initial)	Min. 1.0 V DC (Initial)	53.3 mA	225Ω	640 mW	10 to 16 V DC
	Max. 6.5 V DC (Initial)	$\begin{gathered} \hline \text { Min. } 0.8 \vee \mathrm{DC} \\ \text { (Initial) } \\ \hline \end{gathered}$	66.7 mA	180Ω	800 mW	9 to 16 V DC

* Other usable voltage range types are also available. Please contact us for details.

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C, 1 Form C×2
	Contact resistance (Initial)		N.O.: Typ7m , N.C.: Typ10m (By voltage drop 6 V DC 1 A)
	Contact material		Ag alloy (Cadmium free)
Protective construction			Standard type: Sealed type Pin in Paste type: Flux tight type
Rating	Nominal switching capacity (resistive load)		N.O.: 20A 14V DC, N.C.: 10A 14V DC
	Max. carrying current (14V DC)		N.O.: 20 A for 1 hour, 30 A for 2 minutes (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (when coil powered on one side)
	Nominal operating power		640 mW (for pick-up voltage max. 7.2 V DC), 800 mW (for pick-up voltage max. 6.5 V DC)
	Min. switching capacity (resistive load)*1		1A 14V DC
Electrical characteristics	Initial insulation resistance		Min. $100 \mathrm{M} \Omega$ (at 500 V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. 1,000 m/s ${ }^{2}$ \{100G\} (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to $100 \mathrm{~Hz}, \mathrm{Min} .44 .1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
Expected life	Mechanical		Min. 10^{7} (at 120 cpm)
	Electrical		[Standard type] <Resistive load> Min. 10^{5} (at nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load> N. O. side: Min. 2×10^{5} : at 25 A (inrush), 5 A (steady), 14 V DC; Min. 105: at 25 A 14 V DC (Motor lock) N.C. side: Min. 2×10^{5} : at 20 A 14 V DC (brake) (Operating frequency: 0.5 s ON, 9.5 s OFF) [Pin in Paste type] <Resistive load> Min. 10^{5} (at nominal switching capacity, operating frequency: 1 s ON, 9s OFF) <Motor load> N.O. side: Min. 105: at 25 A (inrush), 5 A (steady), $14 \mathrm{~V} \mathrm{DC;} \mathrm{Min} .5 \times 10^{4}$: at 25 A 14 V DC (Motor lock) N.C. side: Min. 105: at 20 A 14 V DC (brake) (Operating frequency: 0.5 s ON, 9.5 s OFF)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		6 cpm (at nominal switching capacity)
Mass			1 Form C type: approx. 3.5 g .12 oz , Twin type: approx. 6.5 g .23 oz

Notes:
*1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.
*3. Depends on connection conditions. Also, this does not guarantee repeated switching. We recommend that you confirm operation under actual conditions.

* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

REFERENCE DATA

1.-(1) Coil temperature rise (at room temperature)
Sample: ACJ1212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1.-(4) Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

2.-(1) Ambient temperature and operating voltage range

1.-(2) Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACJ1212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

1.-(5) Coil temperature rise (at room temperature)
Sample: ACJ5212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

2.-(2) Ambient temperature and operating voltage range

1.-(3) Coil temperature rise (at room temperature)
Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1.-(6) Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)

Sample: ACJ5212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

3.-(1) Distribution of pick-up and drop-out voltage
Sample: ACJ2112, 50pcs.
Ambient temperature: Room temperature

3.-(2) Distribution of pick-up and drop-out voltage
Sample: ACJ2212, 50pcs.
Ambient temperature: Room temperature

4.-(1) Distribution of operate and release time Sample: ACJ2112, 50pcs.
Ambient temperature: Room temperature

4.-(2) Distribution of operate and release time Sample: ACJ2212, 50pcs.
Ambient temperature: Room temperature

5.-(1) Electrical life test (Motor free)

Sample: ACJ2212, 3pcs
Load: Inrush current: 25A/Steady current: 5A
Power window motor actual load (free condition)
Tested voltage: 14 V DC
Switching frequency: ON 0.5 s , OFF 9.5 s
Switching cycle: 2×10^{5}
Ambient temperature: Room temperature
Circuit

Load current waveform
Inrush current: 25A, Steady current: 6A,
Brake current: 13A

5.-(2) Electrical life test (Motor lock)

Sample: ACJ2212, 3pcs
Load: Steady current: 25A, Power window motor
actual load (lock condition)
Tested voltage: 14V DC
Switching frequency: ON 0.5 s , OFF 9.5 s
Switching cycle: 10^{5}
Ambient temperature: Room temperature Circuit

Load current waveform
Current value: 25A

DIMENSIONS (mm inch)

1. Twin type (8-pin)

 CAD Data

External dimensions

Max. 1mm . 039 inch:
1 to 3 mm .039 to .118 inch: $\pm 0.2+.008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

* Dimensions (thickness and width) of terminal is measured before pre-soldering. Intervals between terminals is measured at A surface level

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

Download CAD Data from our Web site.
2. Twin type (8-pin)

Pin in Paste type

CAD Data

External dimensions

Dimension:
Max. 1mm . 039 inch:
$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal is measured before pre-soldering. Intervals between terminals is measured at A surface level.

3. Twin type (10-pin)

Standard type

CAD Data

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal is measured before pre-soldering. Intervals between terminals is measured at A surface level.

5. Slim 1 Form C

Standard type

CAD Data

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal is measured before pre-soldering. Intervals between terminals is measured at A surface level.

6. Slim 1 Form C
 Pin in Paste type

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal is measured before pre-soldering. Intervals between terminals is measured at A surface level.

NOTES

Assembly and cleaning conditions for Pin-in-Paste type

1) Example of the recommended conditions for automated assembly is shown below.

- Temperature profile during reflowsoldering (Recommended)

$\mathrm{T}_{1}=150$ to $180^{\circ} \mathrm{C} 302$ to $356^{\circ} \mathrm{F}$
$\mathrm{T}_{2}=230^{\circ} \mathrm{C} 446^{\circ} \mathrm{F}$ or more
$\mathrm{T}_{3}=$ Less than $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$
$\mathrm{t}_{1}=60$ to 120 sec .
$\mathrm{t}_{2}=$ Less than 40 sec .
- Cautions for mounting

Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment. Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition. It is recommended to check the temperature rise of each portion under actual mounting condition before use.
2) Cleaning or coating should be avoided. Because "Pin-in-Paste" type is not a sealed type. Also, use caution for avoiding penetration of soldering flux into the interior of the relay.

CJ (ACJ)

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor (for 1 Form $C \times 2$ (8 terminal) type)

For Cautions for Use, see Relay Technical Information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Automotive Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
896H-1AH-D1SW-001-24VDC $896 \mathrm{H}-1 \mathrm{AH}-\mathrm{D} 1 \mathrm{SW}-\mathrm{R} 1-12 \mathrm{VDC} 896 \mathrm{H}-1 \mathrm{CH}-\mathrm{C} 1-001-12 \mathrm{VDC} 896 \mathrm{H}-1 \mathrm{CH}-\mathrm{S}-24 \mathrm{VDC}$ 896HP-1AH-C-12VDC G5CE1ASIDC12 AEV31024 1393204-2 1393302-3 13Z99A115-0074 1432872-1 1617057-2 2-1617057-2 CB1F-M-12V-H15 CB1-T-R-M12V 896H-1CH-D1SF-R1-12VDC 896H-1CH-D1SF-R1-T-12VDC 898H-1AH-D-001-12VDC 24198-1 5-1616920-2 5-1617052-9 5407-0011-HS CB1AF-M-12V-H59 5-1617346-8 103-1AH-C-12VDC CF2Q-12V V23134A1052X299 CP112J 896H-1AH-S1-001-12VDC 897H-1AH-D-R1-U01-12VDC $896 \mathrm{H}-1 \mathrm{CH}-\mathrm{D}-\mathrm{U} 39-24 \mathrm{VDC}$ 896HP-1AH-C-U2120VDC $896 \mathrm{E}-1 \mathrm{CH}-\mathrm{D} 1 \mathrm{SW}-\mathrm{U} 57-12 \mathrm{VDC}$ 896H-1CH-D1SW-R1-U30-12VDC 896H-1AH-C1S-R1-24VDC 102-1CH-C-12VDC V23076A3001D142T 1-19042-6 3-1393305-1 J7TKNA9 V23234A1001X043-EV-144 V23086-R1851-A502 898H-1AH-D1SW-R1-12VDC RH4C1P2607 RE031005 V23134M0052G242 1393204-1 G8N-1L-AS DC12 V23076A3022D142 V23074A2001A402

[^0]: Standard packing; Carton (tube): 70 pcs.; Case: 2,800 pcs. (1 Form C), Carton (tube): 40 pcs.; Case: 1,000 pcs. (8 terminal), Carton (tube): 35 pcs.; Case: 1,400 pcs. (10 terminal)

