1 Form A 60A power latching relays

RoHS compliant

Protective construction: Flux-resistant type

FEATURES

1. Miniature and high capacity

Miniature relay capable of high 60 A capacity control.
Size: $29.0(\mathrm{~L}) \times 38.0(\mathrm{~W}) \times 17.3(\mathrm{H}) \mathrm{mm}$ $1.142(\mathrm{~L}) \times 1.496(\mathrm{~W}) \times .681(\mathrm{H})$ inch
Nominal switching capacity:
60A 250V AC
2. Latching type

Latching type contributes to device energy efficiency.
Nominal operating power

- 500 mW (1 coil latching)
- $1,000 \mathrm{~mW}$ (2 coil latching)

3. High insulation

Between contact and coil Breakdown voltage: 4,000 V AC
Surge breakdown voltage: $10,000 \mathrm{~V}$
TYPICAL APPLICATIONS

1. Remote control of electric power meters
2. Time switches

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Part No.	
	1 coil latching	2 coil latching	
	4.5 V DC	ADQM1604H	ADQM2604H
	9 V DC	ADQM16006	ADQM16009
	12 V DC	ADQM16012	ADQM26006
	24 V DC	ADQM16024	ADQM26009

[^0]
RATING

1. Coil data
1) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	111.1 mA	40.5Ω	500 mW	$130 \% \mathrm{~V}$ of nominal voltage
6 V DC			83.3 mA	72Ω		
9V DC			55.6 mA	162Ω		
12 V DC			41.7 mA	288Ω		
24V DC			20.8 mA	1,152 Ω		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	221.7 mA	20.3Ω	1,000mW	$130 \% \mathrm{~V}$ of nominal voltage
6V DC			166.7 mA	36Ω		
9V DC			111.1 mA	81Ω		
12 V DC			83.3 mA	144Ω		
24V DC			41.7 mA	576Ω		

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgNi type
Rating	Nominal switching capacity (resistive load)		60 A 250V AC
	Max. switching power (resistive load)		15,000 V A
	Max. switching voltage		250 V AC
	Max. switching current		60 A AC
	Nominal operating power		500 mW (1 coil latching), 1,000mW (2 coil latching)
	Min. switching capacity (Reference value)*1		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10mA.)
	Surge breakdown voltage*2 (Initial)	Between contact and coil	Min. 10,000 V
	Set time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)		Max. 20 ms (Nominal voltage applied to the coil, excluding contact bounce time.)
	Reset time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)		Max. 20 ms (Nominal voltage applied to the coil, excluding contact bounce time.)
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2.0 mm
Expected life	Mechanical		Min. 10^{6} (at 180 times/min.)
	Electrical		60A 250V AC Min. 10^{3} (resistive load, operating frequency: 15 s ON, 45s OFF)
			50A 250V AC Min. 10^{4} (resistive load, operating frequency: 15 s ON, 45s OFF)
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 75% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		1 times/min. (at rated load)
Unit weight			Approx. 35 g 1.23 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

CAD Data

General tolerance: $\pm 0.3 \pm .012$

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view) 1 coil latching type 2 coil latching type

Notes: 1. These are dummy terminals for the strength reinforcement for the M4 screw terminal connection. Fix or solder these to the PC board in case setting M4 screw.
However, do not use the dummy terminals as wiring to the PC board. In case wiring of the dummy terminals, the conductor destruction may occur due to the high current.
2. No 3rd terminal on 1 coil latching type.

NOTES

1. For cautions for use, please read
"GENERAL APPLICATION

GUIDELINES".

2. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different. Also, the power waveform should be square and we recommend it be at least 0.1 seconds. Please keep continuous power to the coil to within 10 seconds.

3. Usage, transport and storage conditions

1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
2) Humidity: 5 to 75% RH
(Avoid freezing and condensation.) The humidity range depends on the temperature. The allowable range are as shown in the below figure.
3) Air pressure: 86 to 106 kPa Temperature and humidity range for operation, transport, and storage

4. Others

Installation of M4 securing screw
Do not apply excessive pressure on the terminals. This could adversely affect relay performance. Secure a dummy terminal designed for reinforcement of the terminal to the PC board and use a washer in order to prevent deformation. Keep the installation torque to within 1.2 and $1.4 \mathrm{~N} \cdot \mathrm{~m}$ (12 to $14 \mathrm{kgf} \cdot \mathrm{cm}$). Also, use a spring washer to prevent it from loosening. Do not connect the dummy terminals designed for reinforcement of the terminal as wiring to the PC board. The conductor destruction may occur according to the amount of current.

Electromechanical Control Business Division
■ 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

[^0]: Standard packing: Carton: 20 pcs.; Case: 200 pcs.

