Programmable Controller

FPOR series
$\underset{\text { Conforming to EMC Directive }}{\substack{\text { Lecognition } \\ \text { (ome models only) }}} \mid$

The New Standard of Ultra-compact PLCs

NEW

Equipped with RS485 Port
Largest in its class *1

Large Capacity Program and Data Memory
Fastest in its class *1
Ultra-high Speed Processing

Multi-axis Control available without Expansion

Industry's First *2
Battery-less Automatic Backup of All Data

Our Mission is to Maximize Customer Benefits with Enhancing Advanced Functionality and Performance.

The Answer is FPロ\|, Superior to Basic Ultra-

Smallest in its class *1

The control unit is small at 90 mm 3.54 in in height and 25 mm 0.98 in in width. Even when expanded with three expansion units, the total width only 100 mm
The ultra-compact space-saving body size facilitates the miniaturization of target machines, equipment, and control panels.

Multi-axis (4-axis) control is available without expansion units.
The built-in 4-axis pulse outputs allow multi-axis motor control without positioning units or other expansion units.

Outstanding Products

compact Models.

3.94 in.

NEW

Equipped with RS485 port

Up to 99 units can be connected, expanding applications for the eco-conscious business field.
The PLC link is available with up to 16 other FP series and FPOR units.

Fastest in its class *

Ultra-high speed processing

Ultra-high speed: $80 \mathrm{~ns} /$ step (ST instructions)
*Within a range of 0 to 3,000 steps. Processing of the 3,001st and later steps is $580 \mathrm{~ns}, 1.5$ times faster than the conventional model.
Note: Unit expansion increases the base time.

Base scan time:

I/O refresh + base time
Without expansion units: 0.2 ms or less
With expansion units: 0.2 ms or less $+(1 \times$ Number of expansion units) ms

Industry's First

Battery-less automatic backup of all data

The F type (FP0R-F32) has a built-in FeRAM, which is a cutting-edge device that allows the automatic saving of all data without a backup battery.

- There is no need to worry about data loss after a long vacation
- Battery replacement is no longer necessary when shipping or transferring the unit overseas.
- Replacement of equipment and restoration of idle equipment is easy.
- The unit can be powered off flexibly on weekends or at other non-operating times, promoting energy saving.
* Based on our research as of July 1, 2011

Large capacity independent comment memory

Program maintenance and management become easier.

USB tool port provided as standard equipment

Programming work becomes simpler, easier, and quicker, improving the production efficiency.

Full-fledged positioning functions

A variety of dedicated instructions enable high-accuracy positioning.

Largest in its class
 Large capacity program

Program capacity: 32 k steps *2
Data register: 32 k words *2
*1 Among compact PLCs with up to 128 I/O points based on our research as of July 1, 2011
*2 C10, C14 or C16 control unit: Program capacity of 16 k steps and data register of 12 k words

POSITIONING

Jog positioning control (F171 instruction)

The motion can be started without a preset target value. When a stop signal is input, the target value is set, and the motion is slowed to a stop.

Useful for

- Labelers: Stopping the motion at a constant distance from the point where a label end detection signal is triggered
- Processing machines: Stopping the motion at a constant distance from the point where a processing object edge detection signal is triggered, and cut/drill the object

Changing the speed (available for F171 and F172 instructions)

The target speed can be changed by an external signal input during the jog operation or trapezoidal control operation.

The speed can be freely changed until the operation starts to decelerate to a stop.

Useful for

- Speed synchronization of transfer or processing equipment.

Built-in 4-axis pulse outputs (Transistor output type)

Two sets can simultaneously undergo two-axis linear interpolation.

No complicated speed calculation or programming is required. Two-axis linear interpolation is available by using the F175 dedicated instruction. Two sets such as two $X-Y$ tables, for example, can be simultaneously controlled.

FPOR

Built-in multipoint PWM outputs (4 channels)

The pulse output port of FPOR can also serve as a PWM output port. One of the application examples is an analog voltage output, which can be used for inverter speed control.

The speed can be controlled by changing the ON width of the PWM output.

The unit can also serve as an analog voltage output when a smoothing capacitor is inserted in

Individual settings for acceleration and deceleration (available for F171, F172, and F174 instructions)

The acceleration time and deceleration time can be individually set.

Individually settable within a range of 30 ms to $32,767 \mathrm{~ms}$

Useful for

- Labelers: Starting the operation at a relatively low acceleration to prevent tape from breaking
Stopping the operation at high deceleration when detecting the label end to save the tape
- Lifts: Optimizing the acceleration and deceleration during ascending and descending transfers.

Measuring the pulse frequency (F178 instruction)

Pulses input in a specified period by a single

 instruction are counted, and the frequency is calculated.

High-speed counters and pulse outputs

Ladder programs can be combined to create an application for counting pulse signals from the encoder through the high-speed counter input and adjusting the pulse output frequency based on the count to synchronize the slave axis speed with the master axis speed.

In the right-hand figure, the speed of conveyor 1 , which is inverter-controlled, is measured based on the encoder pulse count, and pulses are output to the slave motor (for jog operation) according to the measured speed in order to synchronize the speed of conveyor 2.

PLC link (MEWNET-W0)

Contact data can be shared among up to 16 PLC units, including FP0R, FP Σ, FP-X, FP2/FP2SH, and a mixture of them, without the need for programs.

Application examples

Use two FPOR units to control the assembly and transfer sections of a small machine respectively, connect them via the PLC link, and share one display

FP \sum, FP-X, and FP2/FP2SH can also be mixed in the network
Application examples Management of manufacturing line operations

RS485 serial communication

Compatible with both Modbus master and slave RTU.

This feature expands applications for the eco-conscious business field, and is ideal for the control of air conditioners, temperature, and electrical power.

- Up to 99 units can be connected.

When 17 or more FP series units need to be linked, you can link up to 99 units by using the Modbus function instead of MEWNET-W0. Since each FPOR unit can be either a master or a slave, a multi-master link can be created by passing a token from a user program.

A multi-master link of up to 99 units can be created.

CC-Link slave unit

This unit is compatible with CC-Link, which is an open network, and capable of reading/writing four-word data through a maximum of 16 input and 16 output points.

FPO-CCLS (AFP07943)

FP Web-Server2

The FPOR operation status can be monitored on a Web browser.
The FPOR operation status can be monitored on a Web browser by connecting FP Web-Server2 and FPOR via RS232C and making required settings using dedicated software (FP Web Configurator Tool 2).

FP Web-Server 2

RS232C general-purpose serial communications
The control unit has an RS232C port for serial communications.
The RS232C port allows for direct connection to an operation display panel or a PC. Also, it facilitates bi-directional data communications with bar-code readers and other RS232C devices.

* The port block has S, R, and G terminals for connection.

Operation display panels can also be connected to the tool port

* Both the relay output and transistor output types of control unit equipped with an RS232C port are available.
- For connection with an operation display panel or a PC

- For data communications with general-purpose RS232C devices

I/O link unit

This link unit enables FPOR to serve as a slave station of MEWNET-F (remote I/O system) and exchange I/O data from 32 input points and 32 output points with a master station without the need for programs.

FPO-IOL (AFP0732)

OTHER USEFUL FUNCTIONS

- Program protection

- Program upload protection setting

User programs can be protected from unauthorized copying by disabling program upload using our software, FPWIN. This function is useful for users who manage original programs on a PC.

- Eight-character password

Since uppercase and lowercase alphanumeric characters can be used, there are approx. 218 trillion possible password combinations. If an incorrect password is entered three times in a row, a cold reboot is required.
This function is useful for users who upload programs from FPOR.

Temperature controller

- A temperature control program can be written in only one line by using a PID instruction (F356 EZPID), facilitating temperature control programming by a PLC, which had previously been considered difficult.
- The total accuracy is $\pm 0.8^{\circ} \mathrm{C} \pm 33.44^{\circ} \mathrm{F}(\mathrm{K}, \mathrm{J}$ and T range). Two types are available: 4-channel and 8-channel types. Up to three units can be connected, allowing high-accuracy multi-point PID control of a maximum of 24 channels.

Built-in real-time clock (T type only)

The clock allows for year, month, day, hour, minute, and second data processing. The clock data can be linked to periodic monitoring of production data and operation status, and the management of error history records.

Interrupt input

This function takes in input signals at high speed regardless of the scan time and instantly executes the interrupt program. This is useful for high-accuracy positioning control or control of defective item ejector valves. The X0 to X7 inputs can be designated as interrupt inputs (C10: X0 to X5).

Analog I/O

The lineup includes a compact analog I/O unit with one analog output and two analog input channels, an A/D converter unit with eight analog input channels, and a D/A converter unit with four analog output channels. Communication using up to 24 channels is possible. Both the compact body size and the high input/output resolution of $1 / 4,000$ (12 bits) have been achieved The DIP switches in the unit cover a variety of input/output ranges and are user-friendly.

Analog I/O unit Input: 2ch / Output: 1ch

(FPO-A21)

A/D converter unit Input: 8ch

AFP0401 (FPO-A80)

D/A converter unit D/A converter unit Current output: 4ch

(FPO-A04V)
 (FP0-A04I)

EEPROM data saving (F12 and P13 instructions)

All FPOR series models are equipped with EEPROM, which can electrically rewrite data and retain data without the need for voltage supply. Setting data and production result data can be written and saved by the P13 instruction, and read out by the F12 instruction when necessary.

Note: Each block is limited to 10,000 write operations.

Program download in RUN mode (Comment writable)

Even while the equipment is operating with FPOR in RUN mode, a whole program edited offline can be downloaded to FPOR, and comments can be written simultaneously.
Programs can be changed without stopping a running production line.

Pulse catch

This function can take in 10μ s short pulse inputs and is therefore ideal for taking in signals from a sensor to detect small components.

The X0 to X7 inputs can be designated as pulse catch inputs.

PROGRAMMING SOFTWARE

Control FPWIN Pro (IEC61131-3 compliant Windows version software)

Features

1. Five programming languages can be used.

Programming can be done using the language most familiar to the developer or using the language most suited to the process to be performed. High-level (structured text) languages that allow structuring, such as C , are supported.
2. Easy to reuse well-proven programs

Efficiency when writing programs has been greatly increased by being able to split programming up for each function and process using structured programming.

3. Keep know-how from getting out

By "black boxing" a part of a program, you can prevent know-how from leaking out and improve the program's maintainability.
4. Uploading of source programs from PLC possible. Maintainability increased by being able to load programs and comments from the PLC.
5. Programming for all models in the FP series possible.

OS	Windows 2000/XP/Vista/7 (Note)
Hard disk capacity	At least 120 MB
CPU	Pentium III processor $(700 \mathrm{MHz}$) or compatible
Onboard memory	At least 256 MB RAM or more
Screen resolution	At least $1,024 \times 768$
Display colors	High Color (16-bit) or higher
Applicable PLC	FP0R/FP0/FPE/FP-X/FP-e/FP2/FP2SH

Note: Only Ver. 6.2 or later is compatible with Windows 7. (To be released in September 2011)

Control FPWIN GR (Windows version software)
The ladder programming software for FP series Highly operational software tool for maximizing convenience in the field

Features

1. Easy field operations not requiring the use of a mouse for data entry, search, writing, monitoring and timer changes, all carried out only from the keyboard.
2. All FP series PLCs are supported.
3. Easy programming with wizard functions.
4. Communication with GTWIN and PCWAY simultaneously through the same port.
5. A simulation function is available.

Operational Environment *FP0R is compatible with Ver. 2.8 or later.
OS Windows $98 / \mathrm{Me} / 2000 / X P /$ Vista/7 (Note) Hard disk capacity At least 40 MB CPU Pentium 100 MHz or higher Onboard memory At least 64 MB (depends on OS) Screen resolution At least $1,024 \times 768$ Display colors High Color (16-bit) or higher Applicable PLC FP0R/FP0/FPE/FP-X/FP-e/FP2/FP2SH

Note: Only Ver. 2.90 or later is compatible with Windows 7.

PART NUMBER LIST

Control units

10 points Input: 6, Relay output: 4
Terminal block type

AfPorciors
with RS232C AFPORC10CRS
with RS485 AFPORC10MR

16 points Input: 8, Transistor output: 8
MIL connector type

AFPORC16T AFPORC16P
with RS232C
AFPORC16CT AFPORC16CP
with RS485
AFPORC16MT AFP0RC16MP

10 points Input: 6, Relay output: 4
Connector type

32 points Input: 16, Transistor output: 16 MIL connector type

AFPORC32T AFPORC32P
with RS232C AFPORC32CT AFPORC32CP
with RS485
AFPORC32MT AFPORC32MP

14 points	Input: 8, Relay output: 6
Terminal block type	
	AFPORC14RS with RS232C AFP0RC14CRS with RS485 AFPORC14MRS
32 points Input: 16, Transistor output: 16	
MIL connecto	or type
	with RS232C
	AFPORT32CT AFP0RT32CP
	with RS485)
	AFPORT32MT

| 14 points Input: 8, Relay output: 6 |
| :--- | :--- |
| Connector type |
| 32 points input: 16, Transistor output: 16 |
| MIL connector type |
| AFP0RC14RM |
| with RS232C |
| AFPORC14CRM |$|$

Expansion units

| 8 points Input: 8 |
| :--- | :--- |
| MIL connector type |
| |
| |
| |
| |
| AFPORE8X |

16 points Input: 16
MIL connector type

AFP0RE16X
16 points Input: 8, Relay output: 8
Terminal block Connector type type

Intelligent units Units in common with FP0
Analog I/O unit Input: 2 ch, Output: 1 ch
A/D converter unit Input: 8 ch

Part number: AFP0480
Product number: (FP0-A21)

16 points Transistor output: 16
MIL connector type

M

16 points Input: 8, Transistor output: 8
MIL connector type

Link and Communication units Units in common with FP0

I/O link unit	CC-Link slave unit	KS1 Signal converter	FP Web-server 2 Unit
Part number: AFP0732 Product number: (FP0-IOL)	AFP07943 (FP0-CCLS)	AKS1202	AFP0611 (FP-WEB2)

Power supply unit and others Units in coommon with FPo

Power supply unit
Input: 100 to 240 V AC,
Output: $24 \mathrm{VDC}, 0.7 \mathrm{~A}$
Part number: AFP0634
Product number: (FP0-PSA4)

FP memory loader
Data clear type: AFP8670
Data hold type: AFP8671
*FPOR is compatible with Ver. 2.0 or later.

INSTALLATION AND OPTIONS

Installation

The control unit width is only 25 mm 0.98 in *. Even when expanded to allow for 128 I/O points, the total width is only 105 mm 4.13 in .

The control unit is pocket-sized: W $25 \times \mathrm{H} 90 \times \mathrm{D} 60 \mathrm{~mm} \mathrm{~W} 0.98 \times$ H $3.54 \times$ D 2.36 in.
The number of I/O points can be expanded up to 128 . Even with the maximum expansion, the size is only $\mathrm{W} 105 \times \mathrm{H} 90 \times \mathrm{D} 60 \mathrm{~mm}$ W $4.13 \times \mathrm{H} 3.54 \times \mathrm{D} 2.36 \mathrm{in}$. The ultra-compact body size and installation area facilitate the miniaturization of target machines, equipment, and control panels.

* The $32 \mathrm{I} / \mathrm{O}$ points type control unit is 30 mm 1.18 in in width.
- Three options for installation methods

The control unit can be directly mounted on a panel by using the optional flat type mounting plate.

Up to three expansion units can be directly

 connected without connection cables.The expansion units can be directly connected to the control unit with a simple operation using the expansion connector and lock lever on the side of the unit. Dedicated cables or backplanes are not necessary for expansion.

A terminal block type and a connector type are available. Both can be detached for easy wiring.

Options

- Wiring tools

Terminal screwdriver
Necessary when wiring relay output type and
terminals block (Phoenix).

Part number: AFP0806

Molex connector pressure contact tool
Necessary when wiring relay output type and molex connectors.
Part number: AFP0805

Multi-wire connector pressure contact tool Necessary when wiring transistor output type connectors.
Part number: AXY52000FP

- Parts for mounting
 Part number: AFP0803 (including 10 pieces)

Flat type mounting plate
Screw-stop attachment plate, Flat model
Part number: AFP0804 (including 10 pieces)

- I/O cables

Relay output molex type I/O cable Loose-wiring cable (9 leads) with molex socket attached at one end, AWG20, $0.5 \mathrm{~mm}^{2}, 1$ set: 2 cables (blue $\&$ white)
<Length: $1 \mathrm{~m} 3.28 \mathrm{ft}>2$ cable set <Length: $3 \mathrm{~m} 9.84 \mathrm{ft}>2$ cable set
Part number: AFP0551 Part number: AFP0553

Transistor output type I/O cable
Loose-wiring cable (10 leads) with connectors attached at one end, AWG22, $0.3 \mathrm{~mm}^{2}, 1$ set: 2 cables (blue \& white).
<Length: $1 \mathrm{~m} 3.28 \mathrm{ft}>2$ cable set <Length: $3 \mathrm{~m} 9.84 \mathrm{ft}>2$ cable set Part number: AFP0521 Part number: AFP0523

- Flat cable connector set (10 leads)

Part number: AFP0808 (including 4 pieces)

Notes: 1) One I/O cable set (2 cables) is necessary with the following models: C10RS / C10RM, C14RS / C14RM, E8RS / E8RM, E16RS / E16RM 2) One I/O cable set (2 cables) is necessary with the following models: C16T / E16X, E16T / E16YT
3) Two I/O cable sets (total 4 cables) are necessary with the following models: C32T / E32T

- Maintenance parts

FPOR Power cable (Length: 1 m 3.28 ft) Attaches to FPOR control unit.

Part number: AFPG805 (1 cable per pack)

FPDR

OPTIONS

OPTIONS

- RT-3 unit relays (Power PhotoMOS relay type)

RT-3 unit relay

Contact	Type	Rated input voltage	RT-3 Unit relay		
arrangement			Product No.	Part No.	Packing quantity
1 Form A $\times 4$	DC only (equipped with AQZ102)	12 V DC	RT3SP1-12V	AY34001	Inner carton: 1 piece Outer case: 20 pieces
		24 V DC	RT3SP1-24V	AY34002	
	AC / DC dual use (equipped with AQZ204)	12 V DC	RT3SP2-12V	AY35001	
		24 V DC	RT3SP2-24V	AY35002	

Notes: 1) Only for use with Power PhotoMOS relays. Cannot be equipped with PA relays.
2) Please consult us other contact arrangement

- RT-3 unit relays (PA relay type)

RT-3 unit relay

Contact arrangement	Rated input voltage	RT-3 Unit relay		
		Product No.	Part No.	Packing quantity
1 Form $\mathrm{A} \times 4$	12 V DC	RT3S-12V	AY33001	Inner carton: 1 piece Outer case: 20 pieces
	24 V DC	RT3S-24V	AY33002	

Notes: 1) Only for use with PA relay type. Cannot be equipped with Power PhotoMOS relay
stndard type. However, equipping with voltage sensitive type is possible.
V DC type relays are also available. Please consult us.
3) Please consult us other contact arrangement.

- 4-point terminals

Mountable relays

4-point terminals

Type	Rated input voltage	Part No.
PA relay and Voltage sensitive type power PhotoMOS relay type	$12,24 \mathrm{~V}$ DC	AY30000

Mountable relays for 4-point terminal

- RT-2 relay terminals

DIN rail mounting type

1. Pressure connector connect type

I/ O type	Rated voltage	Product No.	Part No.	Packing quantity
Input device	12 V DC	RT2S-ID16-12V	AY231501	Inner carton: 1 piece
	24 V DC	RT2S-ID16-24V	AY231502	
Outer case: 10 pieces				

2. Wire-direct connect type

I/ O type	Rated voltage	Product No.	Part No.	Packing quantity
Input device	12 V DC	RT2S-C-ID16-12V	AY231511	Inner carton: 1 piece
	24 V DC	RT2S-C-ID16-24V	AY231512	
Output device	12 V DC	RT2S-C-OD16-12V	AY232511	
	24 V DC	RT2S-C-OD16-24V	AY232512	

OPTIONS

－Cables
Connecting cables for FP series and Interface terminal
Expansion cable with wire－pressed terminal

Product name	Controller side unit	No．of connector contacts of controller side	Interface terminal	Connecting cable							
					Length（Part number）						
				Product name and shape	$\begin{aligned} & 250 \mathrm{~mm} \\ & 9.84 \mathrm{in} \\ & \hline \end{aligned}$	$\begin{array}{r} 500 \mathrm{~mm} \\ 19.69 \mathrm{in} \\ \hline \end{array}$	$\begin{gathered} 1,000 \mathrm{~mm} \\ 39.37 \mathrm{in} \\ \hline \end{gathered}$	$\begin{array}{r} 1,500 \mathrm{~mm} \\ 59.06 \mathrm{in} \\ \hline \end{array}$	$\begin{aligned} & 2,000 \mathrm{~mm} \\ & 78.74 \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 3,000 \mathrm{~mm} \\ & 118.11 \mathrm{in} \end{aligned}$	$\begin{aligned} & 5,000 \mathrm{~mm} \\ & 196.85 \mathrm{in} \\ & \hline \end{aligned}$
FPO FPOR FP乏	8 points Input unit	Input side： 10－pin	RT－2 relay terminal RT－1 PC relay termina	For FPO and FPOR 8－point input高	－	－	AY15013	AY15014	AY15015	AY15016	AY15017
	16 points Input unit	Input side： $10-$ pin $\times 2$	RT－2 relay terminal RT－1 PC relay terminal	For FPO，FPOR and FP Σ 16－point input	－	－	AY15913	AY15914	AY15915	AY15916	AY15917
	8 points Output unit	Output side： 10－pin	RT－2 relay terminal RT－1 PC relay terminal	For FPO and FPOR 8－point output儚	－	－	AY15023	AY15024	AY15025	AY15026	AY15027
	16 points Output unit	Output side： $10-\text { pin } \times 2$	RT－2 relay terminal RT－1 PC relay terminal		－	－	AY15923	AY15924	AY15925	AY15926	AY15927
	16 points I／O unit	I／O side：20－pin	Connector terminal		－	AYT52202	AYT52203	AYT52204	AYT52205	AYT52206	AYT52207
	64 points I／O unit	I／O side：40－pin	RT－2 relay terminal RT－1 PC relay terminal／S type	For FPE 64－point I／O unit	－	－	AY15633	AY15634	AY15635	AY15636	AY15637

Expansion cables with wire－pressed terminal for relay terminal

Product name and shape	I／O type	Relay terminal	Length（Part number）				
			$\begin{aligned} & 1,000 \mathrm{~mm} \\ & 39.37 \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 1,500 \mathrm{~mm} \\ & 59.06 \mathrm{in} \\ & \hline \end{aligned}$	$2,000 \mathrm{~mm}$	$\begin{aligned} & 3,000 \mathrm{~mm} \\ & 118.11 \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 , 0 0 0} \mathrm{mm} \\ & 196.85 \mathrm{in} \\ & \hline \end{aligned}$
Expansion cable with wire－pressed terminal Relay terminal side	16－point both input and output	RT－2 relay terminal RT－1 PC relay terminal／S type	AY15853	AY15854	AY15855	AY15856	AY15857

Note：Please consult us regarding connecting cables for the various controllers．Regarding the expansion cables with wire－pressed terminal，the triangle mark does not correspond to wire No．1，so be sure to inquire for details

－WAGO DIO Station

For Easy and Secure Connection Between
Even a thin sensor or electrical wire can be connected．
（ $0.08-0.5 \mathrm{sq}$ ）

（2）（3）Cable specifications
AWG28，Rated voltage： 30 V
Outer diameter of sheath：ø $4.4 \varnothing 0.17$
Minimum allowable bending radius：$R=13.2$
Power supply wire： $\mathbf{0 . 3} \mathbf{~ s q , ~} \mathbf{2 5 0} \mathbf{~ m m ~} 9.84$ in

Contact WAGO Kontakttechnik GmbH \＆Co．KG for inquiries about DIO Station．
URL：http：／／www．wago．com

COMPATIBILITY

Compatibility between FP0 and FPOR

Programs

FPOR has an "FPO-compatible mode". This mode provides conditions for functions, memory areas, system registers, etc. identical to those of FPO. If programs in FPO are transported to FPOR, FPOR can function identically as FP0 did (with some exceptions described below).

Installation

The shape, outside dimensions, installation method, and the connector pin arrangement are identical to those of FPO.

This high degree of compatibility ensures easy and worry-free replacement of FPO with FPOR even if the device or machine to be manufactured is identical.

- It is recommended that Control FPWIN Pro or FPWIN GR should be used for transporting FPO programs to FPOR. Before an FPO program is downloaded to FPOR, a message stating "Switch to FP0-compatible mode for the download?" appears. If "Yes" is chosen, FPOR will automatically be set in FPO-compatible mode.

- FPO specification items not covered by FP0-compatible mode (See "FPOR User's Manual" for details.)

Item	FP0	FP0R (FP0-compatible mode)
Instruction P13: EEPROM write time	$5 \mathrm{~ms} /$ block (256 blocks max.: $1,280 \mathrm{~ms}$)	100 ms in units of 32 blocks (256 blocks max.: 800 ms)
*Writing even only one block takes 100 ms.		

[^0]
Control unit replacement table

FP0			\longrightarrow	POR	
Product name	Product No.	Part No.	Order receiving will be discontinued in August 2012.	Product name	Part No.
FP0-C10 Control unit	FP0-C10RS	AFP02123		FP0R-C10 Control unit	AFPORC10RS
	FP0-C10RM	AFP02113			AFPORC10RM
FP0-C10 Control unit with RS232C port	FP0-C10CRS	AFP02123C		FP0R-C10 Control unit with RS232C port	AFP0RC10CRS
	FP0-C10CRM	AFP02113C			AFP0RC10CRM
FP0-C14 Control unit	FP0-C14RS	AFP02223		FP0R-C14 Control unit	AFPORC14RS
	FP0-C14RM	AFP02213			AFP0RC14RM
FP0-C14 Control unit with RS232C port	FP0-C14CRS	AFP02223C		FP0R-C14 Control unit with RS232C port	AFP0RC14CRS
	FP0-C14CRM	AFP02213C			AFP0RC14CRM
FP0-C16 Control unit	FP0-C16T	AFP02343		FP0R-C16 Control unit	AFP0RC16T
	FP0-C16P	AFP02353			AFP0RC16P
FP0-C16 Control unit with RS232C port	FP0-C16CT	AFP02343C		FP0R-C16 Control unit with RS232C port	AFP0RC16CT
	FP0-C16CP	AFP02353C			AFP0RC16CP
FP0-C32 Control unit	FP0-C32T	AFP02543		FP0R-C32 Control unit	AFPORC32T
	FP0-C32P	AFP02553			AFP0RC32P
FP0-C32 Control unit with RS232C port	FP0-C32CT	AFP02543C		FP0R-C32 Control unit with RS232C port	AFP0RC32CT
	FP0-C32CP	AFP02553C			AFP0RC32CP
FP0-T32 Control unit with RS232C port, clock / calendar function and 10 k type	FP0-T32CT	AFP02643C		FPOR-T32 Control unit with RS232C port and real clock / calendar function	AFP0RT32CT
	FP0-T32CP	AFP02653C			AFP0RT32CP
FP0-S-LINK Control unit with RS232C port	FP0-SL1	AFP02700		Continue to be available	
No corresponding models					AFP0RF32CT
				FPOR-F32 Control unit with RS232C port	AFP0RF32CP

Expansion unit replacement table

FPO

Product name	Product No.	Part No.	Order receiving will be discontinued in August 2012.	Product name	Part No.
FP0-E8	FP0-E8X	AFP03003		FPOR-E8	AFP0RE8X
	FP0-E8RS	AFP03023			AFPORE8RS
	FP0-E8RM	AFP03013			AFP0RE8RM
	FP0-E8YRS	AFP03020			AFP0RE8YRS
	FP0-E8YT	AFP03040			AFP0RE8YT
	FP0-E8YP	AFP03050			AFP0RE8YP
FP0-E16	FP0-E16X	AFP03303		FP0R-E16	AFP0RE16X
	FP0-E16RS	AFP03323			AFPORE16RS
	FP0-E16RM	AFP03313			AFPORE16RM
	FP0-E16T	AFP03343			AFP0RE16T
	FP0-E16P	AFP03353			AFP0RE16P
	FP0-E16YT	AFP03340			AFPORE16YT
	FP0-E16YP	AFP03350			AFP0RE16YP
FP0-E32	FP0-E32T	AFP03543		FP0R-E32	AFPORE32T
	FP0-E32P	AFP03553			AFPORE32P

SPECIFICATIONS

■ Performance specifications (FPOR Control units)

Product type of FPOR control unit			C10 (Relay output type only)	C14 (Relay output type only)	C16 (Transistor output type only)	C32 (Transistor output type only)	T32 (Transistor output type only)	F32 (Transistor output type only)
Programming method / Control method			Relay symbol / Cyclic operation					
Number of I/O points	No expansion (Control unit only)		10 points [Input: 6, Relay output: 4]	14 points [Input: 8, Relay output: 6]	16 points [Input: 8, Transistor output: 8]	32 points [Input: 16, Transistor output: 16]	$\quad 32$ points[Input: 16, Transistor output: 16]	
	With expansion 1 * Same type of control and expansion units		Max. 58 points	Max. 62 points	Max. 112 points	Max. 128 points	Max. 128 points	
	With expansion 2 * Mix type of relay and transistor units		Max. 106 points	Max. 110 points	Max. 112 points	Max. 128 points	Max. 128 points	
Program memory			EEPROM (no backup battery required)					
Program capacity			16 k steps			32 k steps		
Number of instructions		Basic	110 approx.					
		High-level	210 approx.					
Operation speed		Up to 3,000 steps	Basic instructions: $0.08 \mu \mathrm{~s}$ Min. Timer instructions: $2.2 \mu \mathrm{~s}$ Min. High-level instructions: $0.32 \mu \mathrm{~s}$ (MV instruction) Min.					
		3,001st and later steps	Basic instructions: $0.58 \mu \mathrm{~s}$ Min. Timer instructions: $3.66 \mu \mathrm{~s}$ Min. High-level instructions: $1.62 \mu \mathrm{~s}$ (MV instruction) Min.					
Operation memory	Relay	Internal relay (R)	4,096 points					
		Timer / Counter (T / C)	1,024 points					
	Memory area	Data register (DT)	12,315 words			32,765 words		
		Index register (IX, IY)	14 words (IO to ID)					
Master control relay points (MCR)			256 words					
Number of labels (JMP and LOOP)			256 labels					
Differential points			Equivalent to the program capacity					
Number of step ladder			1,000 stages					
Number of subroutines			500 subroutines					
Special functions	High speed counter		Single-phase: 6 points (50 kHz max. each) 2-phase: 3 channels (15 kHz max. each)*					
	Pulse output		Not available		4 points (50 kHz max. each) Two channels can be controlled individually.*			
	PWM output		Not available		4 points (6 Hz to 4.8 kHz)			
	Pulse catch input / interrupt input		Total 8 points (with high speed counter)					
	Interrupt program		Input: 8 programs (6 programs for C10 only) / Periodic: 1 program / Pulse match: 4 programs					
	Periodical interrupt		In units of 0.5 ms : 0.5 ms to 1.5 sec . / In units of $10 \mathrm{~ms}: 10 \mathrm{~ms}$ to 30 sec .					
	Constant scan		In units of 0.5 ms : 0.5 ms to 600 ms					
	RS232C port		One RS232C port is mounted on each of C10CRS, C10CRM, C14CRS, C14CRM, C16CT, C16CP, C32CT, C32CP, T32CT, T32CP, F32CT and F32CP type (3 P terminal block) Transmission speed (Baud rate): 2,400 to 115,200 bits/s, Transmission distance: 15 m 9.8 ft . Communication method: half duplex					
	RS485 port		One RS485 port is mounted on each of C10MRS, C14MRS, C16MT, C16MP, C32MT, C32MP, T32MT, T32MP, F32MT and F32MP type(3P terminal block) Transmission speed (Baud rate): 115.2 kbps (It is possible to change to 19.2 kbps by the setting.), Transmission distance: $1,200 \mathrm{~m} 3,937 \mathrm{ft}$, Communication method: half duplex					
Maintenance	Memory backup	Program and system register	Stored program and system register in EEPROM					
		Operation memory		Stored fixed are Counter: 16 Internal relay: Data register	a in EEPROM oints 128 points 315 words		Backup of the entire area by a built-in secondary battery	Backup of the entire area by FeRAM (without the need for a battery)
	Self-diagnostic function		Watchdog timer (690 ms approx.), Program syntax check					
	Real-time clock function		Not available				Available	Not available
	Other functions		Rewriting in RUN mode, Download in RUN mode (incl. comments), 8-character password setting, and Program upload protection					
For the limitations while operating units, see the manual.								
General specifications (FPOR Control units)								

\square Input specifications (Common to control units and expansion units) (As for the linitidion on the unmber of simultaneous $O N$ p points, please refert to the manual.)

Item		Specifications	
		Control unit	Expansion unit
Rated input voltage		24 V DC	
Operating voltage range		21.6 to 26.4 V DC	
Rated input current		2.6 mA approx. (at 24 V DC)	4.7 mA approx. (at 24 V DC)
Input impedance		$9.1 \mathrm{k} \Omega$ approx.	$5.1 \mathrm{k} \Omega$ approx.
Input points per common		6 points / common (C10), 8 points / common (C14, C16), 16 points / common (C32, T32, F32)	
Min. ON voltage/ON current		$19.2 \mathrm{~V} / 2 \mathrm{~mA}$	
Max. OFF voltage/OFF current		$2.4 \mathrm{~V} / 1.2 \mathrm{~mA}$	
Response time	$\mathrm{OFF} \rightarrow \mathrm{ON}$	20μ s or less * An input time constant (0.1 to 64 ms) can be set.	2 ms or less
	ON \rightarrow OFF	Same as above	Same as above
Insulation method		Photocoupler	

SPECIFICATIONS

- Output specifications (Common to control units and expansion units)

1. Relay output type

Item		Specifications
Output type		1a
Rated control capacity		$2 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}, 2 \mathrm{~A} 30 \mathrm{~V}$ DC (4.5 A/ common)
Response time	OFF \rightarrow ON	10 ms approx.
	ON \rightarrow OFF	8 ms approx.
Life time	Mechanical	2×10^{7} operations or more
	Electrical	10^{5} operations or more
Surge absorber		None
Output points per common		2 points / common + 1 point / common +1 point / comon (C10), 4 points / common +1 point / common +1 point / comon (C14)

2. Transistor output type

Item		Specifications	
		NPN	PNP
Output type		Open collector	
Rated load voltage		5 to 24 V DC	24 V DC
Load voltage allowable range		4.75 to 26.4 V DC	21.6 to 26.4 V DC
Max. load current		C16, C32, T32 and F32: 0.2 A / point (Max. 14 per common terminal) E16, E32, E8Y and E16Y: 0.3 A / point (Max. 14 per common terminal)	
OFF state leakage current		1μ A or less	
ON state voltage drop		0.2 V DC or less	
Response time	OFF \rightarrow ON	$20 \mu \mathrm{~s}$ or less (Load current: 5 mA or more), $0.1 \mathrm{~ms} \mathrm{or} \mathrm{less} \mathrm{(Load} \mathrm{current:} 0.5 \mathrm{~mA}$ or more) (Note)	
	ON \rightarrow OFF	40 Hs or less (Load current: 5 mA or more), $0.2 \mathrm{~ms} \mathrm{or} \mathrm{less} \mathrm{(Load} \mathrm{current:} 0.5 \mathrm{~mA}$ or more) (Note)	
External power supply	Voltage	21.6 to 26.4 V DC	
		C16, E16T and E8YT: 30 mA or less	C16, E16P and E8YP: 35 mA or less
	Current	C32, T32, F32, E32T and E16Y: 60 mA or less	C32, T32, F32, E32P and E16YP: 70 mA or less
Surge absorber		Zener diode	
Output points per common		8 points / common (C16T), 16 points / common (C32, T32, F32)	
Insulation method		Photocoupler	

Analog unit specifications (FPO Expansion units)

1. Analog input specifications

Item		Specifications	
		FP0-A21	FP0-A80
Number of input points		2 channels / unit	8 channels / unit Number of input points can be changed $2,4,6$ and 8 channels.
Input range	Voltage range	$\begin{array}{\|l\|l\|} \hline 0 \text { to } 5 \mathrm{~V}(\mathrm{~K} 0 \text { to K4000) (Nate 1)/ } \\ -10 \text { to }+10 \mathrm{~V}(\mathrm{~K}-2000 \text { to } \mathrm{K}+2000) \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0 \text { to } 5 \mathrm{~V}(\mathrm{KO} \text { to } \mathrm{K} 4000) \text { (Note } 1) \text { / }-10 \text { to }+10 \mathrm{~V} \\ -100 \text { to }+100 \mathrm{mV}(\mathrm{~K}-2000 \text { to } \mathrm{K}+2000) \text { (Note 1) } \\ \hline \end{array}$
	Current range	0 to 20 mA (K 0 to K 4000) ${ }^{\text {(Note } 1)}$	
Resolution		1/4,000 (12 bits)	
Conversion speed		$1 \mathrm{~ms} /$ channel $^{\text {(Note 2) }}$	
Overall precision		$\pm 1 \% \mathrm{FS}$ or less (0 to $55^{\circ} \mathrm{C} 32$ to $131^{\circ} \mathrm{F}$), $\pm 0.6 \% \mathrm{~F} . \mathrm{S}$ or less ($25^{\circ} \mathrm{C} 77{ }^{\circ} \mathrm{F}$)	
Input impedance	Voltage range	$1 \mathrm{M} \Omega$ or more	
	Current range	250Ω	
Absolute maximum input	Voltage range	$\pm 15 \mathrm{~V}$	
	Current range	$\pm 30 \mathrm{~mA}$	
Insulation method		Between analog input terminal and FP0 internal circuit: optical coupler insulation (non-insulated between channels) Between analog input terminal and analog I/O unit external power supply: based on insulation type DC/DC converter Between analog input terminal and analog output terminal: based on insulation type DC/DC converter	Between analog output terminal and FP0 internal circuit: optical coupler insulation (non-insulated between channels) Between analog input terminal and A/D converter unit external power supply: based on insulation-type DC/DC converter
Number of I/O contact points		32 input contact points	
Averaging function			Can be switched on and off.

Notes: 1) If the analog input value exceeds the upper or lower limit, the digital value will preserve the upper or lower limit. 2) The time shown below is required before the analog data is reflected in the control unit input.

FP0-A21	10 V					
	ov	\square	Refresh standby 0 ms to scan time		Refresh 1 ms x number of expansions	K2000
	ko					
FP0-A80					Refresh1 mex x numberOf expansions	
	OV			K2000		
	k0					

[^1]- I/O circuit diagrams

Note: For transistor output types, make sure that the externally supplied voltage between the (+) and (-) terminal * $\begin{aligned} & \text { is between } 21.6 \text { and } 26.4 \mathrm{~V} \mathrm{DC} \text {. } \\ & \text { * }\end{aligned}$ expansion unit: $5.1 \mathrm{k} \Omega$

2. Analog output specifications

Item		Specifications		
		FP0-A21	FP0-A04V	FP0-A04I
Number of output points		1 channel / unit	Voltage output 4 channels / units	Current output 4 channels / units
Output range	Voltage range	-10 to +10 V range ($\mathrm{K}-2000$ to $\mathrm{K}+2000)^{\text {(Nota 1) }}$		-
	Curentrange	0 to $20 \mathrm{~mA} \mathrm{(K0} \mathrm{to} \mathrm{K4000)}{ }^{\text {(Noel 1) }}$	-	4 to 20 mA (K0 to K4000) ${ }^{\text {(Note 1) }}$
Resolution		1/4,000 (12 bits)		
Conversion speed		$500 \mu \mathrm{~s} /$ channel $^{\text {(Note 2) }}$		
Overall precision		± 1 \% F.S. or less (0 to $55^{\circ} \mathrm{C} 32$ to $131^{\circ} \mathrm{F}$), $\pm 0.6 \%$ F.S. or less ($25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)		
Output impedance	Voltage range	0.5Ω or less		-
Max. output curren Absolute output load resistance	tit Voltage range	$\pm 10 \mathrm{~mA}$		-
	Curentrange	30Ω or less	1,000 Ω or less	500Ω or less
Insulation meth	Od (Note 2)	Between analog output terminal and FPO internal circuit: optical coupler insulation (non-insulated between channels) Between analog output terminal and analog $1 / 0$ unit extenal power supply: based on insulation type $D C / D C$ converter Between analog output terminal and analog input terminal: based on insulation type $D C / D C$ converter	Between analog output termi optical coupler insulation channels) Between analog output termi external power supply: ba converter	nal and FPO internal circuit: non-insulated between nal and D / A converter unit sed on insulation type DC/DC
Number of I/O con	ntact points	16 output contact points	16 input contact points, 32	output contact points (Note 3)

Thermocouple unit specifications (FP0 Expansion units)

Item	Specifications
Number of input points	4-channel, 8-channel (The number of input points can be changed 2, 4, 6 and 8 channels.)
Input range	Range for K and J $\quad-100.0$ to $500.0^{\circ} \mathrm{C} /-148.0$ to $790.0^{\circ} \mathrm{F}$ (Note 1$)$
	Range for T $\quad-100.0$ to $400.0^{\circ} \mathrm{C} /-148.0$ to $752.0{ }^{\circ} \mathrm{F}$
	Range for R $\quad 0$ to $1500.0^{\circ} \mathrm{C} / 32.0$ to $1590.0^{\circ} \mathrm{F}$ ((Note 1)
Digital output	K and J (when using ${ }^{\circ} \mathrm{C}$): $\mathrm{K}-1000$ to K 5000 K and J (when using ${ }^{\circ} \mathrm{F}$): K -1480 to K7900 ${ }^{\text {(Note 1) }}$ (When range over using ${ }^{\circ} \mathrm{C}$: K-1001, K5001 or K8000) (When range over using ${ }^{\circ} \mathrm{F}$: K-1481, K7901 or K8000) (When the thermocouple broken: K8000) ${ }^{\text {(Note 2) }}$ (Until the temperature can be measured at the initial startup: K8001) ${ }^{\text {(Note 3) }}$
	T (when using ${ }^{\circ} \mathrm{C}$): $\mathrm{K}-1000$ to K 4000 T (when using ${ }^{\circ} \mathrm{F}$): $\mathrm{K}-1480$ to K 7520 (When range over using ${ }^{\circ} \mathrm{C}: \mathrm{K}-1001, \mathrm{~K} 4001$ or K8000) (When range over using ${ }^{\circ} \mathrm{F}: \mathrm{K}-1481$, K7521 or K8000) (When the thermocouple broken: K8000) ${ }^{\text {(Nole 2) }}$ (Until the temperature can be measured at the initial startup: K8001) ${ }^{\text {(Note 3) }}$
	R (when using ${ }^{\circ} \mathrm{C}$): K 0 to K 15000 R (when using ${ }^{\circ} \mathrm{F}$): K320 to K15900 (Note 1) (When range over using ${ }^{\circ} \mathrm{C}: \mathrm{K} 0, \mathrm{~K} 15001$ or K16000) (When range over using ${ }^{\circ} \mathrm{F}$: K 0, K15901 or K16000) (When the thermocouple broken: K16000) ${ }^{(\text {Note } 2)}$ (Until the temperature can be measured at the initial startup: K16001) ${ }^{\text {(Note 3) }}$

Item	Specifications	
Resolution	$0.1{ }^{\circ} \mathrm{C}$	
Sampling cycle ${ }^{\text {(Note 5) }}$	300 ms: when using 2 channels for an input points ${ }^{\text {Nade 4) }}$ 500 ms: when using 4 channels for an input points ${ }^{\text {(Nate 4) }}$	700 ms: when using 6 channels for an input points ${ }^{\text {(Nowa 4) }}$ 900 ms : when using 8 channels for an input points ${ }^{\text {(Nale 4) }}$
Overall accuracy	Range for K and J $\left(-100\right.$ to $\left.500{ }^{\circ} \mathrm{C}\right)$: Range for T $\left(-100\right.$ to $\left.400^{\circ} \mathrm{C}\right):$ Range for R $\left(01099 .{ }^{\circ} \mathrm{C}\right):$ $\left(300\right.$ to $\left.299.9^{\circ} \mathrm{C}\right):$ $\left(300\right.$ to $\left.1,500^{\circ} \mathrm{C}\right):$	$\pm 0.8^{\circ} \mathrm{C}$ or less $\pm 0.8^{\circ} \mathrm{C}$ or less $\pm 3^{\circ} \mathrm{C}$ or less $\pm 2.5^{\circ} \mathrm{C}$ or less $\pm 2{ }^{\circ} \mathrm{C}$ or less
Input impedance	$1 \mathrm{M} \Omega$ or more	
Insulation method	- Between thermocouple input terminals and FP0 internal circuits: Photo-coupler insulation, DC/DC converter insulation - Between thermocouple input terminal channels: PhotoMOS relay insulation	
Number of //O contact points	32 input contact points ${ }^{\text {(Note } 6)}$	

Notes:

1) The measurement range available for degree Celsius is not available for degree Fahrenheit, of which the

Tpper-limit measurement is set lower than degree Celsius, since the digital value (temperature value displayed) for
2) When Fahrenheit is bigger than that for degree Celsius. Practice in the ladder program a process for avoiding a risk, would be resulting from a broken thermocouple, and exchange the thermocouple.
Until the conversion data will be ready after the initial startup was made, the digital value shows K8001 or K16001 Those are not a temperature data. Create a ladder program, so that they are not acquired as a temperature data.
4) The settings of the input channel selection switch. Conversion values for 6 time measurements 6 from the latest 8 measurements, excluding the max. and min.) are 6) The control unit reads the data for the digital value to be displayed due to the rapidi temperature change. 1 scan by the control unit. Read data by utilizing the samp program given in the product specifications and manual.

SPECIFICATIONS

I/O Link unit specifications (FP0 Expansion units)

Item	Specifications
Communication method	Two-wire, half duple
Synchronous method	Asynchronous method
Transmission line	2-wire cable (Twisted-pair cable or VCTF 0.75 mm² x 2C equivalent)
Transmission distance (Total distance)	Max. $700 \mathrm{~m} \mathrm{2,297} \mathrm{ft}$ (using twisted-pair cable) Max. $400 \mathrm{~m} \mathrm{1,312} \mathrm{ft} \mathrm{(using} \mathrm{VCTF} \mathrm{cable)}$
Transmission speed (Baud rate)	0.5 Mbits/s
Number of control I/O point per an I/O link unit	64 points (Input: 32 points and Output: 32 points) (Note)
Remote I/O map allocation	$32 \mathrm{X} / 32 \mathrm{Y}$
Interface	Conforming to RS485
Transmission error check	CRC (Cyclic Redumdancy Check) method

Note: This point number is the number of points that can be linked for inputting and outputting via the host PLC and network MEWNET-F. If the output for the I/O link unit error flag is set to ON, this number becomes 63 points (31 input points and 32 output points).

FP Web-server2 unit specifications (FP0 Expansion units)

Item	Specifications
Communication	RS232C \Leftrightarrow Ethernet conversion (PLC remote programming via Ethernet) E-mail sending function functions General-purf function communication (Server/Client) PPP server function
Communication interface	RS232C terminal block 3-pin: Mainly used for PLC connection RS232C D-Sub 9-pin: Mainly used for Modem connection 100 BASE-TX (RJ45): Used for Ethernet connection
RS232C communication	Transmission speed: 1,200, 2,400, 4,800, 9,600, 19,200, 38,400, $57,600, ~ 115,200 ~ b i t s / s ~$ Data length: 7 bits / 8 bits, Parity: Even / Odd / None
Ethernet communication	100 Mbits/s (100 BASE-TX: RJ45)
Supported protocol	TCP, UDP, IP, DHCP, FTP, TELNET, HTTP, SMTP, and PPP
Memory size	148 kB approx. (for storing htm files)
Setup method	Setup using FP Web Configurator Tool 2

CC-Link slave unit specifications (FP0 Expansion units)

1. Communication specifications

Item	Specifications	
Version	CC-Link Ver.1.10	
Communication method	Broadcast polling method	
Transmission speed	$10 \mathrm{Mbits} / \mathrm{s}, 5 \mathrm{Mbits} / \mathrm{s}, 2.5 \mathrm{Mbits} / \mathrm{s}, 625 \mathrm{kbits} / \mathrm{s}, 156 \mathrm{kbits} / \mathrm{s}$	
Max. transmission distance	Ver.1.10 CC-Link cable CC-Link high-performace cable	CC-Link cable
(Note) $10 \mathrm{Mbits} / \mathrm{s}$	100 m 328 ft	100 m 328 ft
$5 \mathrm{Mbits} / \mathrm{s}$	160 m 525 ft	150 m 492 ft
2.5 Mbits/s	400 m 1,312 ft	200 m 656 ft
625 kbits/s	$900 \mathrm{~m} \mathrm{2,952} \mathrm{ft}$	$600 \mathrm{~m} \mathrm{1,969} \mathrm{ft}$
156 kbits/s	1,200 m 3,937 ft	1,200 m 3,937 ft
Interface	RS485	
Station type	Remote device station	
Number of occupied stations	1 station	

Note: Length of the multi-drop connected cables at both ends
The cable length has restrictions in communication speed, CC-Link version, and dedicated cables The cable len
to be used.
For details concerning the CC-Link, refer to the CC-Link Partner Association.
When an FPO thermocouple unit is used with an FPO CC-Link slave unit, the measurement
accuracy of the thermocouple unit which is installed on the left of the CC-Link slave unit is as shown in the table below.

Thermocouple		Standard specifications	When CC-Link slave unit with a thermocouple unit
K, J and T		$0.8{ }^{\circ} \mathrm{C} 33.44{ }^{\circ} \mathrm{F}$	$2{ }^{\circ} \mathrm{C} 35.6{ }^{\circ} \mathrm{F}$
R	0 to $99.9{ }^{\circ} \mathrm{C} 32$ to $211.82{ }^{\circ} \mathrm{F}$	$3{ }^{\circ} \mathrm{C} 37.4{ }^{\circ} \mathrm{F}$	$6{ }^{\circ} \mathrm{C} 42.8{ }^{\circ} \mathrm{F}$
	100 to $299.9{ }^{\circ} \mathrm{C} 212$ to $571.82{ }^{\circ} \mathrm{F}$	$2.5{ }^{\circ} \mathrm{C} 36.5{ }^{\circ} \mathrm{F}$	$5^{\circ} \mathrm{C} 41^{\circ} \mathrm{F}$
	300 to 1,500 ${ }^{\circ} \mathrm{C} 572$ to $2,732{ }^{\circ} \mathrm{F}$	$2^{\circ} \mathrm{C} 35.6{ }^{\circ} \mathrm{F}$	$4^{\circ} \mathrm{C} 39.2{ }^{\circ} \mathrm{F}$

Applicable crimp teriminals

Manufacturer	Part number	Applicable wiring	
JST Mfg. Co., Ltd.	V1.25-M3 (round type) V1.25-S3A (fork type)	0.35 to $1.65 \mathrm{~mm}^{2}$ AWG \#22 to \#15	
	V2-M3 (round type) V2-S3A (fork type)	1.04 to $2.00 \mathrm{~mm}^{2}$ AWG \#17 to \#14	
	7.2 mm 0.28 in or less		

Note: Start up may not be possible if a device with a large inrush current is connected even if below the rated between the power supply unit and the device.

Current consumption

Type of unit		Control unit current consumption (24 V DC)	Expansion unit current consumption (24 V DC)
FPOR control units	C10	100 mA or less	-
	C14	120 mA or less	-
	C16	70 mA or less	-
	$\begin{aligned} & \hline \text { C32 } \\ & \text { T32 } \\ & \text { F32 } \end{aligned}$	90 mA or less	-
FPOR expansion units	AFPORE8X	10 mA or less	-
	AFPORE8R	10 mA or less	50 mA or less
	AFPORE8YR	10 mA or less	100 mA or less
	AFPORE8YT/P	15 mA or less	-
	AFPORE16X	10 mA or less	-
	AFPORE16R	20 mA or less	100 mA or less
	AFP0RE16T/P	20 mA or less	-
	AFPORE16YT/P	25 mA or less	-
	AFPORE32T/P	35 mA or less	-

PRODUCT TYPES

(1) Control units

Product name	Built-in memory (Program capacity)	Specications						Part number
		Numb	f I/O points	Power supply	Input	Output	Connection type	
FPOR-C10 Control Unit	EEPROM (16 k steps)	10	Input: 6 Output: 4	24 V DC	$\left\|\begin{array}{c} 24 \text { V DC } \\ \text { Sink/Source } \\ (\pm \text { common }) \end{array}\right\|$	Relay: 2 A	Terminal block	AFPORC10RS
							Molex connector	AFPORC10RM
FP0R-C10 Control Unit with RS232C port	EEPROM (16 k steps)	10	Input: 6 Output: 4	24 V DC	$\begin{array}{\|c\|} \hline 24 \text { V DC } \\ \text { Sink/Source } \\ \text { (} \pm \text { common }) \\ \hline \end{array}$	Relay: 2 A	Terminal block	AFP0RC10CRS
							Molex connector	AFP0RC10CRM
FPOR-C10 Control Unit with RS485 port	EEPROM (16 k steps)	10	Input: 6 Output: 4	24 V DC	$\begin{array}{\|c\|} \hline 24 \text { V DC } \\ \text { Sink/Source } \\ \text { (} \pm \text { common }) \end{array}$	Relay: 2 A	Terminal block	AFPORC10MRS
FPOR-C14 Control Unit	EEPROM (16 k steps)	14	Input: 8 Output: 6	24 V DC	$\left\lvert\, \begin{gathered} 24 \text { V DC } \\ \text { Sink/Source } \\ (\pm \text { common }) \end{gathered}\right.$	Relay: 2 A	Terminal block	AFP0RC14RS
							Molex connector	AFPORC14RM
FP0R-C14 Control Unit with RS232C port	EEPROM (16 k steps)	14	Input: 8 Output: 6	24 V DC	$\begin{array}{\|c\|} \hline 24 \text { V DC } \\ \text { Sink/Source } \\ \text { (} \pm \text { common }) \\ \hline \end{array}$	Relay: 2 A	Terminal block	AFP0RC14CRS
							Molex connector	AFPORC14CRM
FPOR-C14 Control Unit with RS485 port	EEPROM (16 k steps)	14	Input: 8 Output: 6	24 V DC	$\begin{array}{\|c\|} \hline 24 \mathrm{~V} \text { DC } \\ \text { Sink/Source } \\ (\pm \text { common }) \end{array}$	Relay: 2 A	Terminal block	AFPORC14MRS
FPOR-C16 Control Unit	EEPROM (16 k steps)	16	Input: 8 Output: 8	24 V DC	24 V DC Sink/Source (\pm common)	Transistor NPN: 0.2 A	MIL connector	AFPORC16T
						Transistor PNP: 0.2 A		AFP0RC16P
FP0R-C16 Control Unit with RS232C port	EEPROM(16 k steps $)$	16	Input: 8 Output: 8	24 V DC	24 V DC Sink/Source (\pm common)	Transistor NPN: 0.2 A	MIL connector	AFPORC16CT
						Transistor PNP: 0.2 A		AFPORC16CP
FPOR-C16 Control Unit with RS485 port	EEPROM (16 k steps)	16	Input: 8 Output: 8	24 V DC	24 V DC Sink/Source (\pm common)	Transistor NPN: 0.2 A	MIL connector	AFPORC16MT
						Transistor PNP: 0.2 A		AFPORC16MP
FPOR-C32 Control Unit	EEPROM (32 k steps)	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Source (\pm common)	Transistor NPN: 0.2 A	MIL connector	AFPORC32T
						Transistor PNP: 0.2 A		AFP0RC32P
FP0R-C32 Control Unit with RS232C port	EEPROM (32 k steps)	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Source (\pm common)	Transistor NPN: 0.2 A	MIL connector	AFPORC32CT
						Transistor PNP: 0.2 A		AFPORC32CP
FPOR-C32 Control Unit with RS485 port	EEPROM(32 k steps $)$	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Source (\pm common)	Transistor NPN: 0.2 A	MIL connector	AFPORC32MT
						Transistor PNP: 0.2 A		AFP0RC32MP
FPOR-T32 Control Unit with RS232C port and Real-time clock function	EEPROM (32 k steps)	32	Input: 16Output: 16	24 V DC	$\begin{gathered} 24 \text { V DC } \\ \text { Sink/Source } \\ (\pm \text { common }) \\ \hline \end{gathered}$	Transistor NPN: 0.2 A	MIL connector	AFPORT32CT
						Transistor PNP: 0.2 A		AFP0RT32CP
FPOR-T32 Control Unit with RS485 port and Real-time clock function	EEPROM (32 k steps)	32	Input: 16Output: 16	24 V DC	24 V DC Sink/Source (\pm common)	Transistor NPN: 0.2 A	MIL connector	AFPORT32MT
						Transistor PNP: 0.2 A		AFPORT32MP
FPOR-F32 Control Unit with RS232C port and Battery-less automatic all data backup function	EEPROM (32 k steps)	32	$\begin{array}{\|l} \hline \text { Input: } 16 \\ \text { Output: } 16 \end{array}$	24 V DC	$\begin{gathered} 24 \text { V DC } \\ \text { Sink/Source } \\ (\pm \text { common) } \end{gathered}$	Transistor NPN: 0.2 A	MIL connector	AFPORF32CT
						Transistor PNP: 0.2 A		AFPORF32CP
FPOR-F32 Control Unit with RS485 port and Battery-less automatic all data backup function	EEPROM (32 k steps)	32	Input: 16Output: 16	24 V DC	$\begin{array}{\|c\|} \hline 24 \mathrm{~V} \text { DC } \\ \text { Sink/Source } \\ (\pm \text { common }) \\ \hline \end{array}$	Transistor NPN: 0.2 A	MIL connector	AFPORF32MT
						Transistor PNP: 0.2 A		AFPORF32MP

Notes: 1) See page 13 for the "Control unit replacement table" of the existing FPO control units.
2) A power cable (Part number: AFPG805) is supplied with the control units.

(2) Expansion units

Product name	Specications						Part number
	Number of I/O points		Power supply voltage	Input	Output	Connection type	
FPOR-E8 Expansion Unit	8	Input: 8	-	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & \text { Sink/Source } \\ & \text { (土common) } \\ & \hline \end{aligned}$	-	MIL connector	AFPORE8X
	8	Input: 4	24 V DC	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & \text { Sink/Source } \\ & \text { (} \pm \text { common) } \end{aligned}$	Relay: 2 A	Terminal block	AFP0RE8RS
		Output: 4				Molex connector	AFPORE8RM
	8	Output: 8	24 V DC	-	Relay: 2 A	Terminal block	AFPORE8YRS
	8	Output: 8	-	-	Transistor NPN: 0.3 A	MIL connector	AFP0RE8YT
	8	Output: 8	-	-	Transistor PNP: 0.3 A	MIL connector	AFPORE8YP
FP0R-E16 Expansion Unit	16	Input: 16	-	$\begin{aligned} & \hline 24 \mathrm{~V} \text { DC } \\ & \text { Sink/Source } \\ & (\pm \text { common) } \\ & \hline \end{aligned}$	-	MIL connector	AFPORE16X
	16	Input: 8 Output: 8	24 V DC	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & \begin{array}{l} \text { Sink/Source } \\ (\pm \text { common) } \end{array} \end{aligned}$	Relay: 2 A	Terminal block	AFPORE16RS
						Molex connector	AFPORE16RM
	16	Input: 8 Output: 8	-	$\begin{aligned} & 24 \mathrm{~V} \mathrm{DC} \\ & \text { Sink/Source } \\ & \text { (土common) } \\ & \hline \end{aligned}$	Transistor NPN: 0.3 A	MIL connector	AFPORE16T
	16	Input: 8 Output: 8	-	$\begin{aligned} & 24 \mathrm{~V} \mathrm{DC} \\ & \text { Sink/Source } \\ & \text { (} \pm \text { common) } \end{aligned}$	Transistor PNP: 0.3 A	MIL connector	AFPORE16P
	16	Output: 16	-	-	Transistor NPN: 0.3 A	MIL connector	AFP0RE16YT
	16	Output: 16	-	-	Transistor PNP: 0.3 A	MIL connector	AFP0RE16YP
FP0R-E32 Expansion Unit	32	Input: 16 Output: 16	-	$\begin{aligned} & 24 \mathrm{VDC} \\ & \begin{array}{l} \text { Sinksource } \\ (\pm \text { common) } \end{array} \\ & \hline \end{aligned}$	Transistor NPN: 0.3 A	MIL connector	AFPORE32T
	32	Input: 16 Output: 16	-	$\begin{array}{\|l\|} \hline 24 \mathrm{~V} \mathrm{DC} \\ \text { Sink/Source } \\ (\pm \text { common) } \end{array}$	Transistor PNP: 0.3 A	MIL connector	AFPORE32P
Notes: 1) The relay output type expansion units (The transistor output type expansion 2) The terminal block type relay output u Use a 2.5 mm 0.10 inch wide screwdr AFP0806, Phoenix type code SZS0,	number: 9 pins) ma c terminal lent.	oenix. ewdriver (part	number:	3) The connector type relay output units have two connectors made by Nihon Molex (Molex type code $51067-0900,9$ pins). Use the specific Molex connector press-fit tool (part number: AFP0805, Nihon Molex type code 57189-5000) or equivalent.			

PRODUCT TYPES

3 Intelligent units

Product name		Specications	Product number	Part number
FPO Analog I/O Unit	<Input specifications> Number or channels Input range	2 channels Voltage 0 to $5 \mathrm{~V},-10$ to +10 V (Resolution: $1 / 4,000$) Current 0 to 20 mA (Resolution: 1/4,000)	FPO-A21	AFP0480
	<Output specifications> Number or channels: 1 Output range $:$ V	1 channel Voltage -10 to +10 V (Resolution: $1 / 4,000$) Current 0 to 20 mA (Resolution: 1/4,000)		
FP0 A/D Converter Unit	<Input specifications> Number or channels Input range	8 channels Voltage 0 to $5 \mathrm{~V},-10$ to $+10 \mathrm{~V},-100$ to 100 mV (Resolution: 1/4,000) Current 0 to 20 mA (Resolution: 1/4,000)	FPO-A80	AFP0401
FPO D/A Converter Unit	<Output specifications> Number or channels : Output range	4 channels (Voltage output type) -10 to +10 V (Resolution: $1 / 4,000$) (Current output type) 4 to 20 mA (Resolution: 1/4,000)	FP0-A04V	AFP04121
			FP0-A04I	AFP04123
FPO Thermocouple Unit	K, J, T and R thermocouple, Resolution: $0.1{ }^{\circ} \mathrm{C}$		FPO-TC4	AFP0420
	K, J, T and R thermocouple, Resolution: $0.1{ }^{\circ} \mathrm{C}$		FP0-TC8	AFP0421

(4) Link and communication units

Product name	Specications	Power supply voltage	Product number	Part number
FPO CC-Link Slave Unit	This unit is for making the FPO function as a slave station of the CC-Link. Only one unit can be connected to the furthest right edge of the FP0 expansion bus. Note: Accuracy will change if an FP0 thermocouple unit is used at the same time. For details, please refer to the catalog or to the CC-Link Unit manual.	24 V DC	FPO-CCLS	AFP07943
FPO I/O Link Unit	This is a link unit designed to make the FPO function as a station to MEWNET-F (remote I/O system).	24 V DC	FPO-IOL	AFP0732
KS1 Signal Converter	RS232C/RS485 data can be easily monitored by LAN.	24 V DC	-	AKS1202
C-NET Adapter (for computer side)	This is an RS485 adapter designed to allow use of the computer link function for connecting to a network-connected PLC via C-NET from a host computer.	100 to 240 V AC	-	AFP8536
		24 V DC	-	AFP8532
FP Web-Server 2 Unit	Unit for connecting FP series or RS232C interface device and Ethernet Web-server function and E-mail sending function	24 V DC	FP-WEB2	AFP0611

6 Power supply unit and others

Product name	Specications	Product number	Part number
FP0 Power Supply Unit	Input voltage: 100 to 240 VAC Output capacity: $24 \mathrm{VDC}, 0.7 \mathrm{~A}$	FP0-PSA4	AFP0634
	Data clear type	-	AFP8670
	Data hold type	-	AFP8671

(6) Programming tools

Product name	Specications		Part number
Windows version tool software Control FPWIN Pro Ver. 6 (Conforms to IEC61131-3) (FPOR is compatible with Ver. 6.1 or later.)	Japanese version, Full type	CD-ROM for Windows	AFPS50160
	English version, Full type	CD-ROM for Windows	AFPS50560
Windows version tool software Control FPWIN GR (FPOR is compatible with Ver. 2.8 or later.)	Japanese tool kit with cable	CD-ROM for Windows, with cable (AFC8503) for connection of FP to DOS/V PC	AFPS10122
	English version, Full type	CD-ROM for Windows	AFPS10520
	English version, Small type	CD-ROM for Windows	AFPS11520
	Chinese version, Full type	CD-ROM for Windows	AFPS10820
	Korean	CD-ROM for Windows	AFPS10920
Handheld programmer	Not available for FPOR. Also the discontinued models (AFP1113V2 and AFP1114V2) are not compatible with FP0R. (They are compatible with FP0.)		

(7) Options and maintenance parts

Product name	Specications		Part number
FP Memory Loader (Note)	Data clear type		AFP8670
	Data hold type		AFP8671
Terminal screwdriver	Relay output type Necessary when wiring terminals block (Phoenix).		AFP0806
Molex connector pressure contact tool	Necessary when wiring relay output type and Molex connectors. (MOLEX: 57189-5000)		AFP0805
Multi-wire connector pressure contact tool	Necessary when wiring transistor output type connectors.		AXY52000FP
FPO Slim type Mounting plate	Screw-stop attachment plate for FP0 expansion unit. Slim model.		AFP0803 (set for 10)
FP0 Flat type Mounting plate	Screw-stop attachment plate for FPO control unit. Flat model.		AFP0804 (set for 10)
Relay output Molex type I/O cable	Loose-wiring cable (9 leads) with molex socket attached at one end, AWG20, $0.5 \mathrm{~mm}^{2}$, 1 set: 2 cables (blue \& white).	Length: 1 m 3.3 ft	AFP0551 (2 cables set)
		Length: 3 m 9.8 ft	AFP0553 (2 cables set)
Transistor output type I/O Cable	Loose-wiring cable (10 leads) with connectors attached at one end, AWG22, $0.3 \mathrm{~mm}^{2}$, 1 set: 2 cables (blue \& white)	Length: 1 m 3.3 ft	AFP0521 (2 cables set)
		Length: 3 m 9.8 ft	AFP0523 (2 cables set)
Flat cable connector set	Flat cable connector set (10 leads)		AFP0808 (including 4 pieces)
Terminal socket	Attaches to relay output and terminal block type. Maintenance part		AFP0802 (2 sokets per pack)
Molex socket	Attaches to relay output and Molex connector types. Maintenance part		AFP0801 (2 sokets per pack)
Wire-press socket	Attaches to transistor output type. Maintenance part		AFP0807 (2 sokets per pack)
Power cable for conrol unit	Attaches to FPOR control unit. Maintenance part Length: 1 m 3.3 ft		AFPG805 (1 cable per pack)
Power cable for expansion unit	Attaches to expansion unit. Maintenance part Length: 1 m 3.3 ft		AFP0581 (1 cable per pack)

Note: FPOR is compatible with Ver. 2 or later.

Control units and Expansion units *For the relay output type, the terminal block type is listed as the representative type.
Control units
C10RS, C10RM, C10CRS, C10CRM, C10MRS, C14RS, C14RM, C14CRS, C14CRM and C14MRS

Expansion units
E8RS, E8RM, E8YRS, E16RS and E16RM

Notes: 1) DIN rail is attached on the center of the unit. 2) The AFPORE8YRS is not equipped with an input terminal block.

■ External Dimensions During Expansions

op view (with DIN rail attached)	$A+B+C+D$ dimensions (mm in)					
¢	Control unit		A	$A \rightarrow B$	$\mathrm{A} \rightarrow \mathrm{C}$	$\mathrm{A} \rightarrow \mathrm{D}$
			$\overline{\text { Control unit }}$ only	$\begin{array}{\|l\|} \hline 1 \text { expansion } \\ \text { unit connected } \end{array}$	$\begin{array}{\|l\|} \hline 2 \text { expansion } \\ \text { units connected } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \text { expansion } \\ \text { units connected } \end{array}$
	C10RS C10CRS C10RM C10CRM C10MRS	C16T C16CT C16P C16CP C16MT	25	50	75	100
- Front view	C14RS C14CRS C14RM C14CRM C14MRS	C16MP	0.98	1.97	2.95	3.94
	C32T C32CT C32P C32CP T32CT T32CP F32CT F32CP	$\begin{aligned} & \text { C32MT } \\ & \text { C32MP } \\ & \text { T32MT } \\ & \text { T32MP } \\ & \text { F32MT } \\ & \text { F32MP } \end{aligned}$	$\begin{gathered} 30 \\ 1.18 \end{gathered}$	$\begin{gathered} 55 \\ 2.17 \end{gathered}$	$\begin{gathered} 80 \\ 3.15 \end{gathered}$	$\begin{aligned} & 105 \\ & 4.13 \end{aligned}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for panasonic manufacturer:
Other Similar products are found below :
ECE-A1HKAR47 ELK-EA102FA ELC-09D151F EEC-S0HD224H ELL-5PS3R3N HC2-H-DC48V-F HL2-HP-AC120V-F HL2-H-DC12VF HL2-HP-DC12V-F HL2-HP-DC6V-F HL2-HP-DC24V-F HC4-H-DC24V HL2-HTM-DC24V-F HL2-HTM-AC24V-F HC4-H-AC24V HC4-H-AC120V EEC-RG0V155H AZH2031 RP-SDMF64DA1 EEF-UD0K101R EVM-F6SA00B55 RP-SMLE08DA1 ELC-12D101E ERA-3YEB272V EEC-RF0V684 ERA-3YEB153V ELC-3FN2R2N ERA-3YEB512V ERJ-1GEJ564C ERZ-V20R391 ETQ-P3W3R3WFN ELL-ATV681M ELK-EA100FA EEF-UD0J101R LC-R121R3P ERA-3YEB303V ERZ-V05V680CB EEF-UE0K101R ELK-E101FA EECS0HD224V EVQ-PAC05R ELK-EA222FA LT4H-DC24V LT4HL8-AC24V LT4HW-AC24V LT4HWT8-AC240V LT4HWT-AC240VS CX-444-P-Z CY-122A-P ETQ-P5M470YFM

[^0]: Note: The F type has no compatible functions because it does not correspond to any units of the conventional FP0 series

[^1]: 3) Settings value switch for the number of input channel

 With each one scan of the control unit, the data for two channels will be loaded into control unit. In other words, if the input
 channel number switch is set to 8 -channel, the data in the control unit will be updated once every four scans.

