Panasonic

High Sensitivity, with 100mW nominal operating power, in a compact and space saving case

GN RELAYS

FEATURES

1. Compact slim body saves space. Thanks to the small surface area of 5.7 $\mathrm{mm} \times 10.6 \mathrm{~mm} .224$ inch $\times .417$ inch and low height of 9.0 mm .354 inch, the packaging density can be increased to allow for much smaller designs.
2. High sensitivity single side stable type (Nominal operating power: 100 mW) is available.
3. Outstanding surge resistance Surge breakdown voltage between contacts and coil:
$2,500 \vee 2 \times 10 \mu \mathrm{~s}$ (Telcordia)
Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu \mathrm{~s}$ (FCC part 68)
4. The use of twin crossbar contacts ensures high contact reliability. AgPd contact is used because of its good sulfide resistance. Adopting lowgas molding material. Coil assembly molding technology which avoids generating volatile gas from coil.
5. Increased packaging density Due to highly efficient magnetic circuit design, leakage flux is reduced and changes in electrical characteristics from components being mounted
close-together are minimized. This all means a packaging density higher than ever before.
6. Nominal operating power: 140 mW
7. Outstanding vibration and shock resistance
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$ Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.
9. Sealed according to RTIII (IP67)

TYPICAL APPLICATIONS

1. Telephone switchboard
2. Telecommunications equipment
3. Securits equipmeny
4. Test and measurement equipment
5. Electronic consumer and audio visual equipment

ORDERING INFORMATION

GN（AGN）

TYPES

1．Standard PC board terminal

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1．5V DC	AGN2001H	AGN2101H	AGN2601H
$3 V$ DC	AGN20003	AGN21003	AGN26003
4.5 V DC	AGN2004H	AGN2104H	AGN2604H
$6 V$ DC	AGN20006	AGN21006	AGN26006
$9 V$ DC	AGN20009	AGN21009	AGN26009
12V DC	AGN20012	AGN21012	AGN26012
24V DC	AGN20024	AGN21024	AGN26024

Standard packing：Tube： 50 pcs．；Case：1，000 pcs．

2．Surface－mount terminal

1）Tube packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1.5 V DC	AGN200］1H	AGN210－1H	AGN260］1H
3V DC	AGN200］03	AGN210－103	AGN260］03
4.5 V DC	AGN200］4H	AGN210】4H	AGN260］4H
6 V DC	AGN200］06	AGN210］06	AGN260】06
9 V DC	AGN200】09	AGN210－09	AGN260－09
12 V DC	AGN200】12	AGN210D12	AGN260】12
24V DC	AGN200］24	AGN210－24	AGN260－24

〕．For each surface－mounted terminal identification，input the following letter．A type：\underline{A}, S type：\underline{S}
Standard packing：Tube： 50 pcs．；Case：1，000 pcs

2）Tape and reel packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1.5 V DC	AGN200］1HZ	AGN210－1HZ	AGN260］1HZ
3V DC	AGN200］03Z	AGN210－03Z	AGN260］03Z
4.5 V DC	AGN200］4HZ	AGN210］4HZ	AGN260］4HZ
6V DC	AGN200］06Z	AGN210－06Z	AGN260］06Z
9 V DC	AGN200］09Z	AGN210－09Z	AGN260］09Z
12 V DC	AGN200］12Z	AGN210－12Z	AGN260］12Z
24 V DC	AGN200］24Z	AGN210］24Z	AGN260］24Z

コ：For each surface－mounted terminal identification，input the following letter．A type：\underline{A}, S type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case：1，000 pcs．
Notes：1．Tape and reel packing symbol＂$-Z$＂is not marked on the relay．＂X＂type tape and reel packing（picked from $1 / 2 / 3 / 4$－pin side）is also available．
2．Please inquire if you require a relay，between 1.5 and 24 V DC，with a voltage not listed．

RATING

1．Coil data

1）Single side stable type

Nominal coil voltage	Pick－up voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Drop－out voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Nominal operating current $[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$10 \% \mathrm{~V}$ or more of nominal voltage＊ （Initial）	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.2Ω		
4.5 V DC			31 mA	145Ω		
6 V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1，028 Ω		
24V DC			9.6 mA	2，504 Ω	230mW	$120 \% \mathrm{~V}$ of nominal voltage

2） 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Nominal operating current $[\pm 10 \%]$（at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	66.7 mA	22.5Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1，440 Ω		
24 V DC			5.0 mA	4，800 ${ }^{\text {d }}$	120 mW	

[^0]
3) High sensitivity single side stable type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	22.5Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24V DC			5.0 mA	4,800 Ω	120 mW	$120 \% \mathrm{~V}$ of nominal voltage

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: AgPd+Au clad Movable contact: AgPd
Rating	Nominal switching capacity		1 A 30 V DC, $0.3 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
	Max. switching power		30 W (DC), 37.5 V A (AC) (resistive load)
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 230 mW (24 V DC)
		High sensitivity single side stable type	100 mW (1.5 to 12 V DC), 120 mW (24 V DC)
		1 coil latching	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1min. (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1min. (Detection current: 10mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \vee(2 \times 10 \mu s)$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 times/min.)
	Electrical		Min. 10^{5} (1 A 30 V DC resistive), 10^{5} (0.3 A $125 \mathrm{~V} \mathrm{AC} \mathrm{resistive)} \mathrm{(at} 20$ times/min.)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: (Single side stable, 1 coil latching type) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ (High sensitivity single side stable type) $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 times/min.
Unit weight			Approx. 1 g . 035 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1. Max. switching capacity

2. Life curve

3. Mechanical life

Tested sample: AGN2004H, 15 pcs.; Operating speed: 180 times $/ \mathrm{min}$.

4. Electrical life (1A 30V DC resistive load)

Tested sample: AGN2004H, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

6-(1). Operate and release time (without diode)
Tested sample: AGN2004H, 6 pcs.

	5. Coil temperature rise
Tested sample: AGN2004H, AGN20024, 6 pcs.	
Point measured: Inside the coil	
Change of contact resistance	Ambient temperature: Room temperature

Change of contact resistance

6-(2). Operate and release time (with diode) Tested sample: AGN2004H, 6 pcs.

Tested sample: AGN2004H, AGN20024, 6 pcs.
Point measured: Inside the coil
Ambient temperature: Room temperature

7. Ambient temperature characteristics Tested sample: AGN2004H, 6 pcs.

9-(1). Influence of adjacent mounting Tested sample: AGN20012, 6 pcs.

9-(2). Influence of adjacent mounting Tested sample: AGN20012, 6 pcs.

DIMENSIONS (mm inch))
Download CAD Data from our Web site.

1. PC board terminal CAD Data

External dimensions

 Standard type

PC board pattern

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

Single side stable 1 coil latching High sensitivity single side stable

(Reset condition)

2. Surface-mount terminal

CAD Data

Type	External dimensions	Suggested mounting pad (Tolerance: $\pm 0.1 \pm .004)$
	Single side stable/1 coil latching/High sensitivity single side stable	Single side stable/1 coil latching/High sensitivity single side stable
A type		
S type		

Schematic (Top view)

Single side stable
1 coil latching
High sensitivity single side stable

(Deenergized condition)

(Reset condition)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

Orientation (indicates PIN No.1)stripe

Stopper (green)
2) Tape and reel packing
(A type)

(S type)
(1)-2 Tape dimensions

(2) Dimensions of plastic peel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the Thlla, portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```


[^0]: ＊Pulse drive（JIS C 5442－1996）

