TUV

Panasonic ideas for life

RoHS compliant

TV-4 rated.

 2a 3A/5A power relays
LA RELAYS (ALA)

4. High noise immunity realized by the card separation structure between contact and coil
5. Conforms to the various safety standards

- UL, CSA, VDE, TÜV, SEMKO approved

TYPICAL APPLICATIONS

- Audio devices
- Monitor
- Automatic vending machine

ORDERING INFORMATION

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Note: Certified by UL, CSA, VDE, TÜV, SEMKO and TV-4

TYPES

Contact arrangement	Coil voltage	Part No.	
		3A type	5A TV type (TV-4)
2 Form A	12 V DC	ALA2F12	ALA2PF12

Standard packing Carton: 100 pcs. Case: 500 pcs.
Note: $4.5 \mathrm{~V}, 5 \mathrm{~V}, 9 \mathrm{~V}$ and 18 V DC types are also available. Please consult us for details.

RATING

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
12 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$5 \% \mathrm{~V}$ or more of nominal voltage (Initial)	44.2 mA	272Ω	530 mW	15.6 V DC
24 V DC			22.1 mA	1,087 Ω		31.2 V DC

2. Specifications

Characteristics	Item		Specifications	
			3A type	5A TV type (TV-4)
Contact	Arrangement		2 Form A	
	Contact resistance (Initial)		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6V DC 1A)	Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6V DC 1A)
	Contact material		Gold-clad, AgNi type	AgSnO_{2} type
Rating	Nominal switching capacity (resistive load)		3A 125V AC	5A 277V AC
	Max. switching power (resistive load)		625VA	1,385VA
	Max. switching voltage		125 V AC	277 V AC
	Max. switching current		5A (AC)	
	Min. switching capacity*1		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Breakdown voltage" section.	
	Breakdown voltage (Initial)	Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	
		Between contact and coil	4,000 Vrms for 1 min . (Detection current: 10 mA)	
	Temperature rise (coil)		Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (with nominal coil voltage and at 3 A contact carrying current, at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)	Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (with nominal coil voltage and at 5 A contact carrying current, at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
	Surge breakdown voltage ${ }^{\star 2}$(Between contact and coil) (Initial)		10,000 V	
	Operate time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms (excluding contact bounce time.)	
	Release time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms (excluding contact bounce time) (With diode)	
Mechanical characteristics	Shock resistance	Functional	$200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	$1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		Min. 10^{6} (at 180 times/min.)	
	Electrical (at 20 times/min.)		Min. 5×10^{4} (ON: OFF=1.5s: 1.5 s) (at nominal switching capacity)	
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$, Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature), Air pressure: 86 to 106 kPa	
	Max. operating speed		20 times/min. (at nominal switching capacity)	
Unit weight			Approx. $13 \mathrm{~g} \mathrm{}$.	

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

1. Max. switching power (AC resistive load)

3-(1). Coil temperature rise Sample: ALA2F12, 6 pcs. Measured portion: coil inside Contact current: $0 \mathrm{~A}, 3 \mathrm{~A}$

3-(2). Coil temperature rise
Sample: ALA2PF12, 6 pcs.
Measured portion: coil inside
Contact current: 0 A, 5A

Change of pick-up and drop-out voltage

4. Ambient temperature characteristics and coil applied voltage
Contact current: ALA2F=3A
ALA2PF=5A

5-(1). Electrical life test
(3 A 125 V AC, resistive load)
Sample: ALA2F12, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = 1.5s: 1.5 s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

5-(2). Electrical life test
(5 A 250 V AC, resistive load)
Sample: ALA2PF12, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = $1.5 \mathrm{~s}: 1.5 \mathrm{~s}$
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Circuit:

5-(3). Electrical life test

(UL lamp load test TV-4)
Tested sample: ALA2PF12, 6 pcs.

- Overload test

Load: 6.0 A 120 V AC (60 Hz),
Inrush: 91 A
Operation frequency: 10 times $/ \mathrm{min}$
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 50 ope
Endurance test
Load: 4A 120 V AC (60 Hz),
Inrush: 65 A
Operation frequency: 10 times $/ \mathrm{min}$
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 25,000 ope.

Change of pick-up and drop-out voltage

Change of contact resistance

Change of pick-up and drop-out voltage

Change of contact resistance
\longrightarrow No. of operations, $\times 10^{4}$

Change of contact resistance

DIMENSIONS (mm inch) The CAD data of the products with a CADDala mark can be downloaded foom: htpp:/induststial.panasonic.commacele/

CAD Data

External dimensions

Dimension:
Less than 1mm .039inch:
$\begin{array}{lr}\text { Less than } 1 \mathrm{~mm} .039 \text { inch: } & \pm 0.1 \pm .004 \\ \text { Min. } 1 \mathrm{~mm} .039 \text { inch less than } 3 \mathrm{~mm} .118 \text { inch: } \pm 0.2 \pm .008\end{array}$
Min. 3mm . 118 inch:

PC board pattern (Bottom view)

Tolerance : $\pm 0.1 \pm .004$
Schematic (Bottom view)

General tolerance
$\pm 0.3 \pm .012$

SAFETY STANDARDS

Item	UL/C-UL (Recognized)		CSA (Certified)		VDE (Certified)		TV rating (UL/CSA)		TÜV (Certified)		SEMKO (Certified)	
	File No.	Contact rating	File No.	Contact rating	File No.	Contact rating	File No.	Rating	File No.	Rating	File No.	Contact rating
Standard	E43149	3A 125V AC 3A 30V DC 5A 50V DC	LR26550 etc.	3A 125V AC 3A 30V DC 5A 50V DC	40012000	$\begin{aligned} & 3 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC}(\cos \phi=1.0) \\ & 3 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline \text { B } 1105 \\ 13461298 \\ \hline \end{array}$	$\begin{aligned} & \text { 3A 125V AC (} \cos \phi=1.0) \\ & 3 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	817139	$\begin{aligned} & 3 \mathrm{~B} 125 \mathrm{~V} \text { AC } \\ & 3 \mathrm{~A} \mathrm{30V} \mathrm{DC} \end{aligned}$
High capacity	E43149	$\begin{aligned} & \text { 5A 277V AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} D \mathrm{C} \end{aligned}$	LR26550 etc.	$\begin{aligned} & \text { 5A 277V AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} D \mathrm{C} \end{aligned}$	40012000	$\begin{aligned} & \text { 5A 250V AC }(\cos \phi=1.0) \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	UL E43149 CSA LR26550	TV-4	$\begin{aligned} & \text { B } 1105 \\ & 13461298 \end{aligned}$	$\begin{aligned} & \text { 5A } 250 \mathrm{~V} \mathrm{AC}(\cos \phi=1.0) \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	817139	4/65A 250V AC

For Cautions for Use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

