SUBMINIATURE, LONG STROKE SEALED SWITCHES

TURQUOISE STROKE MIN SWITCHES

RoHS compliant

FEATURES

- Miniaturization achieved with changing from 1 Form C to 1 Form A or 1 Form B contacts.
(For the terminal type, volume has been cut 45% compared to our previous product.)
- Lever installation possible while being miniature.
Operation possible in various moving parts such as metal cams.
- Contact pressure does not depend on the operation stroke.
- High contact reliability to support low level switching loads.
- Highly effective sealing for resistance against adverse environments. (IP67)
- Silent operation with sliding contact.

TYPICAL APPLICATIONS

- Automobiles (detection of door opening and closing, shift lever position, etc.)
- Household appliances (vacuum cleaners, air conditioners, washing machines, etc.)

ORDERING INFORMATION

ASQM1
Mounting
1: Without boss type (wire leads type only)
6: Right 2 boss type (terminal type only)
7: Left 2 boss type (terminal type only)
Terminal
4: Terminal type (Solder terminal)
6: Wire leads type
Contact form
2: Normally Closed type (NC)
3: Normally Open type (NO)
Actuator
0: Pin plunger
8: Simulated roller lever

Note: Not every combination is available. Please refer to the following table, "PRODUCT TYPES".

PRODUCT TYPES

1. Terminal type (s				Carton: 1,000 pcs.
Actuator	Right 2 boss type		Left 2 boss type	
	NC type	NO type	NC type	NO type
Pin plunger	ASQM16420	ASQM16430	ASQM17420	ASQM17430
Simulated roller lever	ASQM16428	ASQM16438	ASQM17428	ASQM17438
2. Wire leads type				Carton: 240 pcs.
Actuator	NC type		NO type	
Pin plunger	ASQM11620		ASQM11630	
Simulated roller lever	ASQM11628		ASQM11638	

Turquoise Stroke mini Switch

RATING

1. Rating
$1 \mathrm{~mA}, 5 \mathrm{~V}$ DC to $50 \mathrm{~mA}, 16 \mathrm{~V}$ DC

2. Operation environment and conditions

Item	
Ambient and storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (no freezing and condensing)
Allowable operating speed	30 to $500 \mathrm{~mm} / \mathrm{sec}$.
Max. operating cycle rate	120 cpm

Note: When switching at low and high speeds or under vibration, or in high-temperature, high-humidity environments, life and performance may be reduced significantly depending on the load capacity. Please consult us.

3. Electrical characteristics

Item	\quad Specifications
Withstand voltage (Initial)	Between non-continuous terminals: 500 Vrms, Between each terminal and other exposed metal parts: 1,500 Vrms, Between each terminal and ground: $1,500 \mathrm{Vrms}$ (at detection current of 1 mA)
Insulation resistance (Initial)	Min. $100 \mathrm{M} \Omega$ (at 500 V DC insulation resistance meter) (Locations measured same as withstand voltage.)
Contact resistance (Initial)	Max. $500 \mathrm{~m} \Omega$ (By voltage drop 50 mA 6 to 8 V DC)

4. Characteristics

Item		Specifications	
Electrical switching life	5 V DC 1 mA (resistive load)	Min. 3×10^{5}	Switching frequency: 20 times/min. Conduction ratio: 1:1 Plunger operation speed: $100 \mathrm{~mm} / \mathrm{s}$ Plunger switching position: Free Position (F.P.) to Total Travel Position (T.T.P.)
	12 V DC 50 mA (resistive load)	Min. 2×10^{5}	
	16 V DC 50 mA (resistive load)	Min. 1.5×10^{5}	
Vibration resistance (malfunction vibration resistance)		Single amplitude: 0.75 mm Amplitude of vibration: 10 to 55 Hz (4 minutes cycle) Direction and time: 30 minutes each in X, Y and Z directions	
		Amplitude of vibration: 5 to 200 Hz (10 minutes cycle) Acceleration: $43.1 \mathrm{~m} / \mathrm{s}^{2}$ Direction and time: 30 minutes each in X, Y and Z directions	
Shock resistance (malfunction shock resistance)		Shock value: $980 \mathrm{~m} / \mathrm{s}^{2}$ Direction and time: 5 times each in X, Y and Z directions	
Terminal strength		6 N min . (each direction) *Terminal deformation possible.	
Heat resistance		$85^{\circ} \mathrm{C} 500$ hours	
Cold resistance		$-40^{\circ} \mathrm{C} 500$ hours	
Humidity resistance		$40^{\circ} \mathrm{C} 95 \%$ RH 500 hours	
Water resistance		IP67 (Wire leads type)	

Notes: As long as there are no particular designations, the following conditions apply to the test environment.

- Ambient temperature: 5 to $35^{\circ} \mathrm{C}$
- Relative humidity: 25 to 85% RH
- Air pressure: 86 to 106 kPa

5. Protective structure

1) JIS C0920 (water-resistance experiments for electrical machines and protection rating against incursion of solid substances): Immersion protected (Note 1)
2) IEC 60529 (rating for outer shell protection): IP67 (Immersion protected) (Note 1)
except metal terminal part (See below drawing)

3) JIS D0203 (method for testing moisture resistance and water resistance in automotive components): Equivalent of D2 (Note 2)

Note 1) A concrete testing method is to check for any adverse effect on the structure after leaving it submerged for 30 minutes under 1 m of water (with temperature difference between water and switch no larger than $5^{\circ} \mathrm{C}$).
Note 2) A concrete testing method is to check for any adverse effect on the structure after leaving it submerged for 10 minutes under 10 cm water (with temperature difference between water and switch no larger than $30^{\circ} \mathrm{C}$).

6. Operating characteristics

Characteristics		Pin plunge	Simulated roller lever
Operating Force (O.F.) max.		1.2 N	1.5 N
Total Travel Force (T.F.) max. (Reference value)		(3.0N)	(2.8N)
Free Position (F.P.) max.	Terminal type	7.7 mm	13.4 mm
	Wire leads type	14.45 mm	20.15 mm
Operating Position (O.P.)	Terminal type	Initial: $7.1 \pm 0.25 \mathrm{~mm}$ After test: $7.1 \pm 0.3 \mathrm{~mm}$	Initial: $10.75 \pm 0.6 \mathrm{~mm}$ After test: $10.75 \pm 0.7 \mathrm{~mm}$
	Wire leads type	Initial: $13.75 \pm 0.35 \mathrm{~mm}$ After test: $13.75 \pm 0.4 \mathrm{~mm}$	Initial: $17.4 \pm 0.7 \mathrm{~mm}$ After test: $17.4 \pm 0.8 \mathrm{~mm}$
Release Position (R.P.)	Terminal type	Initial: $7.15 \pm 0.3 \mathrm{~mm}$ After test: $7.15 \pm 0.35 \mathrm{~mm}$	Initial: $11.05 \pm 0.7 \mathrm{~mm}$ After test: $11.05 \pm 0.8 \mathrm{~mm}$
	Wire leads type	Initial: $13.8 \pm 0.4 \mathrm{~mm}$ After test: $13.8 \pm 0.45 \mathrm{~mm}$	Initial: $17.7 \pm 0.8 \mathrm{~mm}$ After test: $17.7 \pm 0.9 \mathrm{~mm}$
Over Travel (O.T.) min.	Terminal type	Initial: 1.75 mm After test: 1.70 mm	Initial: 2.25 mm After test: 2.15 mm
	Wire leads type	Initial: 1.65 mm After test: 1.60 mm	Initial: 2.15 mm After test: 2.05 mm
Total Travel Position (T.T.P.) (Reference value)	Terminal type	(5.1 mm)	(7.9mm)
	Wire leads type	(11.75mm)	(14.55mm)

Note: The above indicates the characteristics when operating the actuator from the vertical direction.

DATA

Applicable current range (Reference)

DIMENSIONS The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/

1. Terminal type (Solder terminal), Right 2 boss type, Pin plunger mm General tolerance: ± 0.25

CAD Data

Operating Force (O.F.) max.	1.2 N
Total Travel Force (T.F.) max. (Reference value)	$(3.0 \mathrm{~N})$
Free Position (F.P.) max.	7.7 mm
Operating Position (O.P.)	Initial: $7.1 \pm 0.25 \mathrm{~mm}$ After test: $7.1 \pm 0.3 \mathrm{~mm}$
Release Position (R.P.)	Initial: $7.15 \pm 0.3 \mathrm{~mm}$ After test: $7.15 \pm 0.35 \mathrm{~mm}$
Over Travel (O.T.) min.	Initial: 1.75 mm After test: 1.70 mm
Total Travel Position (T.T.P.) (Reference value)	$(5.1 \mathrm{~mm})$

Turquoise Stroke mini Switch

CAD Data

Operating Force (O.F.) max.	1.2 N
Total Travel Force (T.F.) max. (Reference value)	$(3.0 \mathrm{~N})$
Free Position (F.P.) max.	7.7 mm
Operating Position (O.P.)	Initial: $7.1 \pm 0.25 \mathrm{~mm}$ After test: $7.1 \pm 0.3 \mathrm{~mm}$
Release Position (R.P.)	Initial: $7.15 \pm 0.3 \mathrm{~mm}$ After test: $7.15 \pm 0.35 \mathrm{~mm}$
Over Travel (O.T.) min.	Initial: 1.75 mm After test: 1.70 mm
Total Travel Position (T.T.P.) (Reference value)	$(5.1 \mathrm{~mm})$

3. Terminal type (Solder terminal), Right 2 boss type, Simulated roller lever

CAD Data

Operating Force (O.F.) max.	1.5 N
Total Travel Force (T.F.) max. (Reference value)	$(2.8 \mathrm{~N})$
Free Position (F.P.) max.	13.4 mm
Operating Position (O.P.)	Initial: $10.75 \pm 0.6 \mathrm{~mm}$ After test: $10.75 \pm 0.7 \mathrm{~mm}$
Release Position (R.P.)	Initial: $11.05 \pm 0.7 \mathrm{~mm}$ After test: $11.05 \pm 0.8 \mathrm{~mm}$
Over Travel (O.T.) min.	Initial: 2.25 mm After test: 2.15 mm
Total Travel Position (T.T.P.) (Reference value)	$(7.9 \mathrm{~mm})$

4. Terminal type (Solder terminal), Left 2 boss type, Simulated roller lever

CAD Data

Operating Force (O.F.) max.	1.5 N
Total Travel Force (T.F.) max. (Reference value)	$(2.8 \mathrm{~N})$
Free Position (F.P.) max.	13.4 mm
Operating Position (O.P.)	Initial: $10.75 \pm 0.6 \mathrm{~mm}$ After test: $10.75 \pm 0.7 \mathrm{~mm}$
Release Position (R.P.)	Initial: $11.05 \pm 0.7 \mathrm{~mm}$ After test: $11.05 \pm 0.8 \mathrm{~mm}$
Over Travel (O.T.) min.	Initial: 2.25 mm After test: 2.15 mm
Total Travel Position (T.T.P.) (Reference value)	$(7.9 \mathrm{~mm})$

CAD Data

Operating Force (O.F.) max.	1.2 N
Total Travel Force (T.F.) max. (Reference value)	$(3.0 \mathrm{~N})$
Free Position (F.P.) max.	14.45 mm
Operating Position (O.P.)	Initial: $13.75 \pm 0.35 \mathrm{~mm}$ After test: $13.75 \pm 0.4 \mathrm{~mm}$
Release Position (R.P.)	Initial: $13.8 \pm 0.4 \mathrm{~mm}$ After test: $13.8 \pm 0.45 \mathrm{~mm}$
Over Travel (O.T.) min.	Initial: 1.65 mm After test: 1.60 mm
Total Travel Position (T.T.P.) (Reference value)	$(11.75 \mathrm{~mm})$

6. Wire leads type, Simulated roller lever

CAD Data

CAUTIONS FOR USE

1. Soldering conditions

- The application of excessive heat upon the switch when soldering can cause degradation of switch operation.
Therefore, be sure to keep within the conditions given below.
- Manual soldering: Use soldering irons (max. $350^{\circ} \mathrm{C}$, within 3 seconds) capable of temperature adjustment. This is to prevent deterioration due to soldering heat. Care should be taken not to apply force to the terminals during soldering. (More than one second interval is required to apply heat at each terminal.)

2. Mounting

- To secure the wire leads type switch, please use M3 small screws on a flat surface and tighten using a maximum torque of $0.29 \mathrm{~N} \cdot \mathrm{~m}$.
Be sure to verify the quality under actual conditions of use because the switch plastic might be deformed according to that the kind of the screw (size of screw head etc.), the diameter of the washer and the presence of washer. And use of adhesive lock is recommended to prevent loosening of the screws. When using an adhesive, care should be taken not to invade the adhesive into the switches.
- Be sure to maintain adequate insulating clearance between each terminal and ground.
- The positioning of the switch should be such that direct force is not applied to the plunger or actuator in its free position. The operating force to the plunger should only be applied in a perpendicular direction.
- Although it is possible to directly operate the pin plunger type from the lateral direction, please consult us if doing so.
- After mounting please make sure no pulling load will be applied to the switch terminals.

Turquoise Stroke mini Switch

3. Cautions regarding the circuit

- In order to prevent malfunction in set devices caused by bounce and chattering during the ON-OFF switch operation, please verify the validity of the circuit under actual operating conditions and temperature range.
- When switching inductive loads (relays, solenoids, buzzers, etc.), an arc absorbing circuit is recommended to protect the contacts.

4. Please verify under actual conditions.

- Please be sure to conduct quality verification under actual operating conditions in order to increase reliability during actual use.

5. Switch selection

- Please make your selection so that there will be no problems even if the operating characteristics vary up to $\pm 20 \%$ from the standard values.

6. Oil-proof and chemical-proof characteristics

- The rubber cap swells when exposed to oil and chemicals. The extent of swelling will vary widely depending on the type and amount of oil and chemicals. Check with the actual oil or chemicals used. In particular, be aware that solvents such as freon, chlorine, and toluene cannot be used.

7. Operation environment

- Although continuous operation of the switch is possible within the range of ambient temperature (humidity), as the humidity range differs depending on the ambient temperature, the humidity range indicated below should be used. Continuous use near the limit of the range should be avoided.
This temperature-humidity range does not guarantee permanent performance.

8. Others

- Please remember that this switch cannot be used under water. Also, pleased be warned that switching and sudden temperature changes with the presence of water droplets can cause seepage into the unit.
- Keep away from environments where silicon based adhesives, oil or grease are present as faulty contacts may result from silicon oxide. Do not use in areas where flammable or explosive gases from gasoline and thinner, etc., may be present.
- When using the lever type, please be careful not to apply unreasonable load from the reverse or lateral directions of operation.
- Do not exceed the total travel position (T.T.P.) and press the actuator. This could cause operation failure. Also, when switching at high speed or under shock even within the operation limit, the working life may decrease. Therefore, please be sure to verify the quality under actual conditions of use.
- Please make considerations so that the switch does not become the stopper for the moving part.
- Please do not constantly apply a tensile load to wire leads when fixing them.

Panasonic Corporation

Automation Controls Business Division
■ Head Office: 1048, Kadoma, Kadoma-shi, Osaka 571-8686, Japan
■Telephone: +81-6-6908-1050 ■ Facsimile: +81-6-6908-5781
industrial.panasonic.com/ac/e/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Basic / Snap Action Switches category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
5SM901-S12 5SM9-S12N195 602EN532 602EN535-RB 602HE5-RB1 604HE162 604HE223-6B 624HE17-RB 6HM82 6HM89 6SE1 6SX1-H58 7050021670599106 MBD5B1 MBH2731 73-316-0012 EXD-AR20 $792119237 \underline{79218589}$ 7AS12

MIL30126AB6BBMD4A12XAU ML-1155 ML-1376 831010C3.0 831090C2.EL 83131904 84212012 8AS239 8HM73-3 8SX26-H33
914CE1-6G PL-100 11SM1077-H4 11SM1077-H58 11SM1-TN107 11SM405 11SM8423-H2 11SX37-T 11SX48-H58 11SM2442-T
11SM76-T 11SM77-H58 11SM77-T 11SM863-T 11SM866 A7CN-1M-1-LEFT A831700C7.0 121EN187-R 121EN188-R

