Cos
TUV

Panasonic

1a 10 A,1a1b/2a 8 A small polarized power relays

FEATURES

 250 V AC. operating power

1. Compact with high capacity

High capacity switching in a small package: 1 Form A, 10 A 250 V AC; 1 Form A 1 Form B and 2 Form A, 8 A
2. High sensitivity: $\mathbf{2 0 0} \mathbf{m W}$ nominal
3. High breakdown voltage

Independent coil and the contact structure improves breakdown voltage.

Between contact and coil	Between open contacts
4,000 Vrms for 1 min.	$1,000 \mathrm{Vrms}$ for 1 min.
$10,000 \mathrm{~V}$ surge	
breakdown voltage	$1,500 \mathrm{~V}$ surge
breakdown voltage	

4. Latching types available
5. Sealed construction allows automatic washing.
6. High insulation resistance Creepage distance and clearances between contact and coil: Min. 8 mm DK2a-L2: 6.8 mm DK1a1b-L2: 6.8 mm
7. Sockets are available
8. Complies with safety standards Complies with Japan Electrical Appliance and Material Safety Law requirements for operating 200 V power supply circuits, and complies with UL, CSA, and TÜV safety standards.

TYPICAL APPLICATIONS

1. Switching power supply
2. Power switching for various OA equipment
3. Control or driving relays for industrial machines (robotics, numerical control machines, etc.)
4. Output relays for programmable logic controllers, temperature controllers, timers and so on.
5. Home appliances

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances.
(The suffix "F" should be added to the part number)
(Note: The Suffix " F " is required only for 1 Form A contact type. The 2 Form A and 1 Form A 1 Form B contact type is originally Cadmium free, the suffix " F " is not required.)
Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

[^0]2. VDE approved type is available.

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
1 Form A	3V DC	DK1a-3V-F	DK1a-L-3V-F	DK1a-L2-3V-F
	5V DC	DK1a-5V-F	DK1a-L-5V-F	DK1a-L2-5V-F
	6V DC	DK1a-6V-F	DK1a-L-6V-F	DK1a-L2-6V-F
	9V DC	DK1a-9V-F	DK1a-L-9V-F	DK1a-L2-9V-F
	12 V DC	DK1a-12V-F	DK1a-L-12V-F	DK1a-L2-12V-F
	24 V DC	DK1a-24V-F	DK1a-L-24V-F	DK1a-L2-24V-F
1 Form A 1 Form B	3V DC	DK1a1b-3V	DK1a1b-L-3V	DK1a1b-L2-3V
	5V DC	DK1a1b-5V	DK1a1b-L-5V	DK1a1b-L2-5V
	6V DC	DK1a1b-6V	DK1a1b-L-6V	DK1a1b-L2-6V
	9V DC	DK1a1b-9V	DK1a1b-L-9V	DK1a1b-L2-9V
	12 V DC	DK1a1b-12V	DK1a1b-L-12V	DK1a1b-L2-12V
	24 V DC	DK1a1b-24V	DK1a1b-L-24V	DK1a1b-L2-24V
2 Form A	3V DC	DK2a-3V	DK2a-L-3V	DK2a-L2-3V
	5V DC	DK2a-5V	DK2a-L-5V	DK2a-L2-5V
	6V DC	DK2a-6V	DK2a-L-6V	DK2a-L2-6V
	9V DC	DK2a-9V	DK2a-L-9V	DK2a-L2-9V
	12 V DC	DK2a-12V	DK2a-L-12V	DK2a-L2-12V
	24 V DC	DK2a-24V	DK2a-L-24V	DK2a-L2-24V

Standard packing: Carton: 50 pcs.; Case: 500 pcs.

* For sockets, see page 8.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.6 mA	45Ω	200mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	125Ω		
6V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.6 mA	720Ω		
24V DC			8.3 mA	2,880 Ω		
2) 1 coil latching						
Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or more of nominal voltage (Initial)	33.3 mA	90Ω	100mW	$130 \% \mathrm{~V}$ of nominal voltage
5 V DC			20 mA	250Ω		
6V DC			16.6 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 ${ }^{\text {a }}$		
24 V DC			4.1 mA	5,760		

3) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.6 mA	66.6 mA	45Ω	45Ω	200mW	200mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	40 mA	125Ω	125Ω			
6V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12 V DC			16.6 mA	16.6 mA	720Ω	720Ω			
24 V DC			8.3 mA	8.3 mA	2,880	2,880 Ω			

2. Specifications

Characteristics		Item	Specifications		
Contact	Arrangement		1 Form A	1 Form A 1 Form B	2 Form A
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)		
	Contact material		Au-flashed AgSnO_{2} type	Au-flashed AgNi type	
Rating	Nominal switching capacity (resistive load)		$\begin{gathered} 10 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}, 10 \mathrm{~A} 30 \mathrm{~V} \\ \text { DC } \end{gathered}$	8 A 250 V AC, 8 A 30 V DC	8 A 250 V AC, 8 A 30 V DC
	Max. switching power (resistive load)		2,500VA, 300 W	2,000 VA, 240 W	2,000 VA, 240 W
	Max. switching voltage		250 V AC, 125 V DC	250 V AC, 125 V DC	250 V AC, 125 V DC
	Max. switching current		10 A	8 A	8 A
	Nominal operating power		200 mW		
	Min. switching capacity (Reference value)*1		10 m A 5 V DC		
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1min. (Detection current: 10mA.)		
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)		
	Surge breakdown voltage*2 (Initial)	between contacts and coil	10,000 V		
	Temperature rise (coil) (at $65^{\circ} \mathrm{C} 149{ }^{\circ} \mathrm{F}$)		Max. $40^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; max. switching current)		
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Approx. 5 ms) [10 ms (Approx. 5 ms)] (Nominal coil voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 8 ms (Approx. 3 ms) [10 ms (Approx. 3 ms)] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)		
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)		
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	10 to 55 Hz at double amplitude of 3 mm		
Expected life	Mechanical		Min. 5×10^{7} (at 300 times/min.)		
	Electrical		Min. 10^{5} (resistive load, at 20 times/min., at rated capacity)		
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$, Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. operating speed (at rated load)		20 times/min.		
Unit weight			Approx. 5 g .18 oz	Approx. 6 g .21 oz	Approx. 6 g .21 oz

Notes:
$* 1$. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1-(1). Maximum operating power (1 Form A)

1-(2). Maximum operating power (1 Form A 1 Form B, 2 Form A)

\longrightarrow Contact voltage, V

3-(1). Operate/Release time (1 Form A) Tested sample: DK1a-24V, 5 pcs.

4-(2). Coil temperature rise
(1 Form A 1 Form B, 2 Form A)
Tested sample: DK1a1b-12V, 5 pcs. Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

2-(1). Life curve (1 Form A)

3-(2). Operate/Release time (1 Form A 1 Form B, 2 Form A) Tested sample: DK1a1b-12V, 5 pcs.

5-(1). Ambient temperature characteristics (1 Form A)
Tested sample: DK1a-24V, 6 pcs
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{F}$ to $+176^{\circ} \mathrm{F}$

5-(2). Ambient temperature characteristics (1 Form A 1 Form B, 2 Form A)

1. 1 Form A type

CAD Data

External dimensions
Single side stable type

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)
Single side stable

(Deenergized condition) 1 coil latching

(Reset condition)
2 coil latching

(Reset condition)

2. 1 Form A 1 Form B type, 2 Form A type

CAD Data

Single side stable type

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)

$$
\text { <1 Form A } 1 \text { Form B type> }
$$ Single side stable

(Deenergized condition) 1 coil latching

(Reset condition) 2 coil latching

(Reset condition)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)
<2 Form A>
Single side stable

(Deenergized condition) 1 coil latching

(Reset condition)
2 coil latching

(Reset condition)

Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

SAFETY STANDARDS

Item	UL/C-UL (Recognized)		CSA (Certified)		VDE (Certified)		TÜV (Certified)	
	File No.	Contact rating	File No.	Contact rating	File No.	Contact rating	File No.	Rating
1 Form A	E43028	$\begin{aligned} & \text { 10A } 250 \mathrm{~V} \text { AC } \\ & 1 / 3 \mathrm{HP} 125,250 \mathrm{~V} \text { AC } \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	LR26550 etc.	$\begin{aligned} & 10 \mathrm{~A} 250 \mathrm{~V} \text { AC } \\ & 1 / 3 \mathrm{HP} 125,250 \mathrm{~V} \text { AC } \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	006099UG	AC 250 V 10A $(\cos \varphi=1.0)$ AC 250V $5 \mathrm{~A}(\cos \varphi=0.4)$ DC 30V 10A (0ms)	$\begin{aligned} & 8705 \\ & 1645520 \end{aligned}$	$\begin{aligned} & \text { 10A } 250 \mathrm{~V} \text { AC }(\cos \varphi=1.0) \\ & 5 \mathrm{~A} 250 \mathrm{VAC}(\cos \varphi=0.4) \\ & \text { 10A 30V DC } \end{aligned}$
1 Form A 1 Form B, 2 Form A	E43028	$\begin{aligned} & \text { 8A } 250 \mathrm{~V} \text { AC } \\ & 1 / 4 \mathrm{HP} 125,250 \mathrm{~V} \mathrm{AC} \\ & 8 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	LR26550 etc.	$\begin{aligned} & 8 \mathrm{~A} 250 \mathrm{~V} \text { AC } \\ & 1 / 4 \mathrm{HP} 125,250 \mathrm{~V} \mathrm{AC} \\ & 8 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	006099UG	1 Form A 1 Form B: AC 250V 8A ($\cos \varphi=1.0$) 2 Form A: AC $250 \mathrm{~V} 8 \mathrm{~A}(\cos \varphi=1.0)$ AC $250 \mathrm{~V} 4 \mathrm{~A}(\cos \varphi=0.4)$	$\begin{aligned} & 87051645 \\ & 520(1 \text { Form A } \\ & 1 \text { Form B) } \\ & 9407 \text { 13461 } \\ & 097(2 \text { Form A) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 8A } 250 \mathrm{~V} \text { AC }(\cos \varphi=1.0) \\ & \text { 4A } 250 \mathrm{~V} \text { AC }(\cos \varphi=0.4) \\ & \text { 8A 30V DC } \end{aligned}$

DK

NOTES

1. Soldering should be done under the following conditions:
$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ within 3 s
Soldering depth: $2 / 3$ terminal pitch
2. External magnetic field

Since DK relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.
3. When using, please be aware that the a contact and b contact sides of 1 Form A and 1 Form B types may go on simultaneously at operate time and release time.

For Cautions for Use, see Relay Technical Information.

Panasonic

ACCESSORIES

DK RELAY SOCKET

FEATURES

DK relay sockets that can be used also for DY relay.

TYPES

Type		Part No.
1 Form A	Single side stable	DK1a-PS
	2 coil latching	DK1a-PSL2
	Single side stable	DK2a-PS
	2 coil latching	DK2a-PSL2

Standard packing: Carton: 50 pcs.; Case: 500 pcs Note: * 2 Form A type is DK relays only.

RELAY COMPATIBILITY

Socket	1 Form A		1 Form A 1 Form B, 2 Form A		
	Single side stable type	2 coil latching type	Single side stable type	2 coil latching type	
1 Form A	Single side stable type	\bullet	\bullet	-	-
	2 2 coil latching type	-	\bullet	-	-
1 Form A 1 Form B 2 Form A	Single side stable type	-	-	\bullet	\bullet
	2 2 coil latching type	-	-	-	\bullet

SPECIFICATIONS

Item	Specifications
Breakdown voltage	$4,000 \mathrm{Vrms}$ (Detection current: 10 mA) (Except the portion between coil terminals)
Insulation resistance	Min. 1,000 m (at $500 \mathrm{~V} \mathrm{DC)}$
Heat resistance	$150^{\circ} \mathrm{C}$ (for 1 hour)
Max. continuous current	10 A (DK1a-PS, DK1a-PSL2), 8 A (DK2a-PS, DK2a-PSL2)

DIMENSIONS (mm inch)

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

1 Form A

The above shows 2 coil latching type. No. 2 and 5 terminal are eliminated on single side stable type.

1 Form A 1 Form B

Tolerance: $\pm 0.1 \pm .004$

The above shows 2 coil latching type. No. 2 and 7 terminal are eliminated on single side stable type.

DK

FIXING AND REMOVAL METHOD

1. Match the direction of relay and socket.

2. Both ends of the relay are to be secured firmly so that the socket hooks on the top surface of the relay.

GOOD

NO GOOD
3. Remove the relay, applying force in the direction shown below.

4. In case there is not enough space to grasp the relay with fingers, use screwdrivers in the way shown in the illustration.

Notes: 1. Exercise care when removing relays. If greater than necessary force is applied at the socket hooks, deformation may alter the dimensions so that the hook will no longer catch, and other damage may also occur
2. It is hazardous to use IC chip sockets.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

[^0]: Notes: 1. UL/CSA, TÜV approved type is standard.

