DMG204B1

Silicon NPN epitaxial planar type (Tr1) Silicon PNP epitaxial planar type (Tr2)

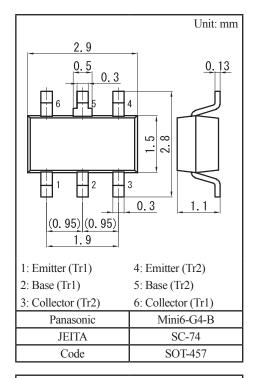
For low frequency amplification

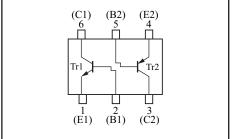
■ Features

- \bullet High forward current transfer ratio h_{FE} with excellent linearity
- Low collector-emitter saturation voltage V_{CE(sat)}
- Halogen-free / RoHS compliant
 (EU RoHS / UL-94 V-0 / MSL: Level 1 compliant)

■ Marking Symbol: C5

■ Basic Part Number

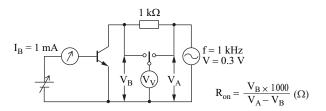

DSC2501 + DSA2001 (Individual)


Packaging

DMG204B10R Embossed type (Thermo-compression sealing): 3 000 pcs / reel (standard)

■ Absolute Maximum Ratings $T_a = 25$ °C

Parameter		Symbol	Rating	Unit
Tr1	Collector-base voltage (Emitter open)	V _{CBO}	25	V
	Collector-emitter voltage (Base open)	V _{CEO}	20	V
	Emitter-base voltage (Collector open)	V_{EBO}	12	V
	Collector current	I_{C}	0.5	A
	Peak collector current	I_{CP}	1	A
Tr2	Collector-base voltage (Emitter open)	V _{CBO}	-60	V
	Collector-emitter voltage (Base open)	V _{CEO}	-50	V
	Emitter-base voltage (Collector open)	V _{EBO}	-7	V
	Collector current	I_{C}	-100	mA
	Peak collector current	I_{CP}	-200	mA
Overall	Total power dissipation	P _T	300	mW
	Junction temperature	T_j	150	°C
	Operating ambient temperature	T _{opr}	-40 to +85	°C
	Storage temperature	T _{stg}	-55 to +150	°C

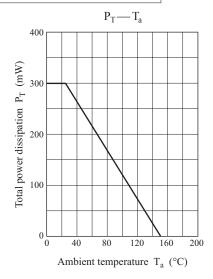

■ Electrical Characteristics $T_a = 25$ °C±3°C

• Tr1

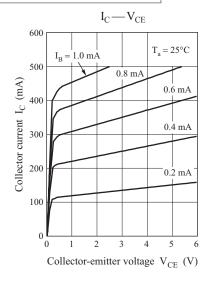
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Collector-base voltage (Emitter open)	V _{CBO}	$I_C = 10 \mu A, I_E = 0$	25			V
Collector-emitter voltage (Base open)	V _{CEO}	$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$	20			V
Emitter-base voltage (Collector open)	V_{EBO}	$I_E = 10 \mu A, I_C = 0$	12			V
Collector-base cutoff current (Emitter open)	I_{CBO}	$V_{CB} = 25 \text{ V}, I_{E} = 0$			100	nA
Forward current transfer ratio	h_{FE}	$V_{CE} = 2 \text{ V}, I_{C} = 0.5 \text{ A}$	200		800	_
Collector-emitter saturation voltage *1	V _{CE(sat)}	$I_C = 0.5 \text{ A}, I_B = 20 \text{ mA}$		0.18	0.40	V
Base-emitter saturation voltage *1	V _{BE(sat)}	$I_C = 0.5 \text{ A}, I_B = 50 \text{ mA}$			1.2	V
Transition frequency	f_T	$V_{CE} = 10 \text{ V}, I_{C} = 50 \text{ mA}$		150		MHz
Collector output capacitance (Common base, input open circuited)	C _{ob}	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$		6		pF
ON resistance *2	R _{on}			1.0		Ω

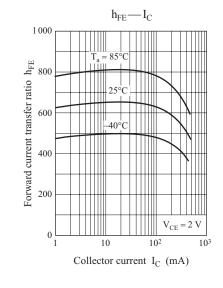
Note) 1. Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 measuring methods for transistors.

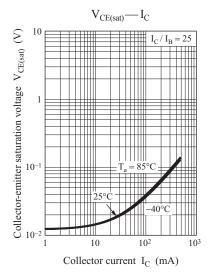
- 2. *1: Pulse measurement
 - *2: Ron measurement circuit

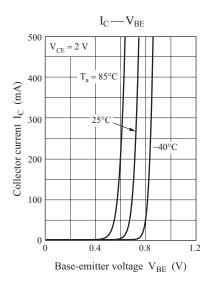

• Tr2

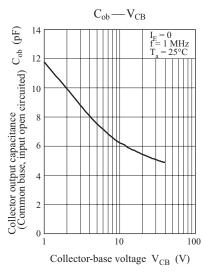
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Collector-base voltage (Emitter open)	V_{CBO}	$I_{\rm C} = -10 \mu \text{A}, I_{\rm E} = 0$	-60			V
Collector-emitter voltage (Base open)	V _{CEO}	$I_{\rm C} = -2 \text{ mA}, I_{\rm B} = 0$	-50			V
Emitter-base voltage (Collector open)	$V_{\rm EBO}$	$I_E = -10 \mu\text{A}, I_C = 0$	-7			V
Collector-base cutoff current (Emitter open)	I_{CBO}	$V_{\rm CB} = -20 \text{ V}, I_{\rm E} = 0$			-0.1	μА
Collector-emitter cutoff current (Base open)	I _{CEO}	$V_{CE} = -10 \text{ V}, I_{B} = 0$			-100	μА
Forward current transfer ratio	h _{FE}	$V_{CE} = -10 \text{ V}, I_{C} = -2 \text{ mA}$	210		460	_
Collector-emitter saturation voltage	V _{CE(sat)}	$I_C = -100 \text{ mA}, I_B = -10 \text{ mA}$		-0.2	-0.5	V
Transition frequency	f_T	$V_{CE} = -10 \text{ V}, I_{C} = -2 \text{ mA}$		150		MHz
Collector output capacitance (Common base, input open circuited)	C _{ob}	$V_{CB} = -10 \text{ V}, I_E = 0, f = 1 \text{ MHz}$		2		pF

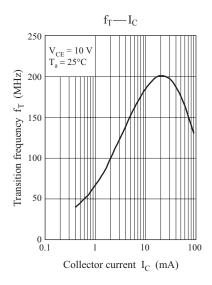

 $Note)\ Measuring\ methods\ are\ based\ on\ JAPANESE\ INDUSTRIAL\ STANDARD\ JIS\ C\ 7030\ measuring\ methods\ for\ transistors.$

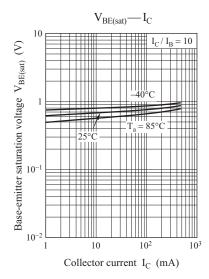

Ver. CED 2

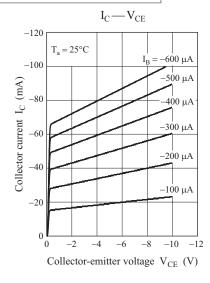

Common characteristics chart

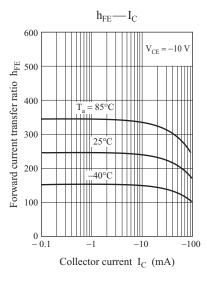



Characteristics charts of Tr1

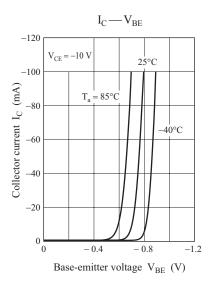


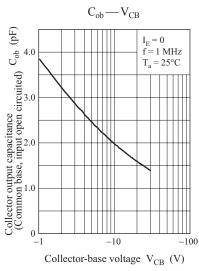


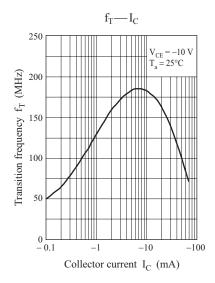


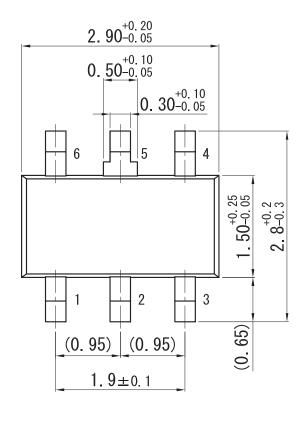


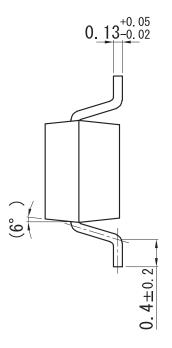


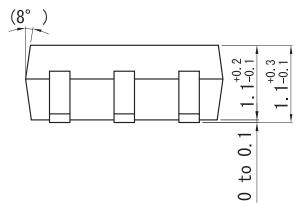



Characteristics charts of Tr2

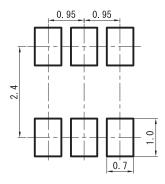








Mini6-G4-B


Unit: mm

■ Land Pattern (Reference) (Unit: mm)

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20100202

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Panasonic manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E

FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G

NTE101 NTE13 NTE15