

RoHS compliant

High Reliability Relay for Various Applications

DS RELAYS

FEATURES

1. Breakthrough height of 9.8 mm .386 inch beats the $\mathbf{1 0} \mathbf{~ m m} .394$ inch limit 1 c and 2 c all have the same height (9.8 mm .386 inch). The width of the relay is also the same (9.9 mm .390 inch). Since the only size variable is the length, the shared form makes mounting on printed printing wiring boards easy.
2. Suitable for use in difficult environments
Epoxy resin seals the parts and cut off the external atmosphere, thus enabling use in difficult environments.
3. Can be used with automatic solder and automatic wash systems Automatic soldering and automatic washing can be carried out once the parts are mounted on PC boards.
4. Gold-clad twin contacts ensure high reliability
Highly stable gold cladding on the contacts ensures that contact resistance changes little over time. Furthermore, the use of twin contacts, a configuration that performs with superior contact reliability, ensures extremely low contact failure rates even under low level loads.
5. Polarized magnetic circuits realize resistance to shock and vibration High-performance polarized magnetic circuits that utilize the energy of permanent magnets have made it possible to create relays with strong resistance to shock and vibration.
6. DIL terminal array enables use of IC sockets
7. Widening scope of application with multicontact latching
In addition to single side stable types, you can take advantage of the memory of functions of convenient 2 coil latching relays.

TYPICAL APPLICATIONS

Besides telecommunications, measuring devices, office equipment, computers and related equipment, DS relays are also recommended for a broad range of applications including business devices, audio systems, and industrial equipment.

ORDERING INFORMATION

[^0]
TYPES

1. High sensitivity type

Contact arrangement	Nominal coil	Single side stable type	2 coil latching type
	voltage	Part No.	Part No.
1 Form C	1.5 V DC	DS1E-S-DC1.5V	DS1E-SL2-DC1.5V
	3V DC	DS1E-S-DC3V	DS1E-SL2-DC3V
	5V DC	DS1E-S-DC5V	DS1E-SL2-DC5V
	6V DC	DS1E-S-DC6V	DS1E-SL2-DC6V
	9V DC	DS1E-S-DC9V	DS1E-SL2-DC9V
	12 V DC	DS1E-S-DC12V	DS1E-SL2-DC12V
	24V DC	DS1E-S-DC24V	DS1E-SL2-DC24V
	48V DC	DS1E-S-DC48V	DS1E-SL2-DC48V
2 Form C	3 V DC	DS2E-S-DC3V	DS2E-SL2-DC3V
	5V DC	DS2E-S-DC5V	DS2E-SL2-DC5V
	6V DC	DS2E-S-DC6V	DS2E-SL2-DC6V
	9V DC	DS2E-S-DC9V	DS2E-SL2-DC9V
	12 V DC	DS2E-S-DC12V	DS2E-SL2-DC12V
	24V DC	DS2E-S-DC24V	DS2E-SL2-DC24V
	48V DC	DS2E-S-DC48V	DS2E-SL2-DC48V

Standard packing: Carton: 50 pcs.; Case: 500 pcs.

RATING

1. Coil data
1) Single side stable type

Type	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power	Max. applied voltage (at $50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$)
High sensitivity (S) type	1.5 V DC*	1 Form C: $80 \% \mathrm{~V}$ or less of nominal voltage 2 Form C: $70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	133.3 mA	11.3Ω	200 mW	Form C: $160 \% \mathrm{~V}$ of nominal voltage
	3V DC			66.7 mA	45Ω		
	5V DC			40.0 mA	125Ω		
	6V DC			33.3 mA	180Ω		
	9V DC			22.2 mA	405Ω		2 Form C:
	12 V DC			16.7 mA	720Ω		$200 \% \mathrm{~V}$ of
	24 V DC			8.3 mA	2,880 ${ }^{\text {, }}$		nominal voltage
	48 V DC			4.2 mA	11,520		

2) 2 coil latching type

Type	Nominal coil voltage	$\begin{gathered} \text { Set voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$		Nominal operating power		Max. applied voltage (at $50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$)
				Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
High sensitivity (S) type	1.5 V DC*	1 Form C: $80 \% \mathrm{~V}$ or less of nominal voltage	1 Form C: $80 \% \mathrm{~V}$ or less of nominal voltage	120 mA	120 mA	12.5Ω	12.5 Ω	180mW	180mW	1 Form C:$160 \% \mathrm{~V}$ of nominal voltage
	3V DC			60 mA	60 mA	50Ω	50Ω			
	5V DC			36 mA	36 mA	139Ω	139Ω			
	6V DC			30 mA	30 mA	200Ω	200Ω			
	9V DC	2 Form C: $70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	2 Form C: $70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	20 mA	20 mA	450Ω	450Ω			$\begin{gathered} 2 \text { Form C: } \\ 200 \% \text { of } \\ \text { nominal voltage } \end{gathered}$
	12 V DC			15 mA	15 mA	800Ω	800Ω			
	24V DC			7.5 mA	7.5 mA	3,200	3,200			
	48V DC			3.75 mA	3.75 mA	12,800 Ω	12,800 Ω			

[^1]
2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		1 Form C	2 Form C
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Ag+Au clad	
Rating	Nominal switching capacity		2 A 30 V DC (resistive load)	
	Max. switching power		$60 \mathrm{~W}, 125 \mathrm{VA}$ (resistive load)	
	Max. switching voltage		220 V DC, 250 V AC	
	Max. carrying current		3 A	
	Min. switching capacity (Reference value)* ${ }^{\star_{1}}$		$10 \mu \mathrm{~A} 10 \mathrm{~m}$ V DC	
	Nominal operating power		Single side stable (S type: 200 mW); latching (S type: 180 mW)	
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500V DC)Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min.(500 Vrms for $1 \mathrm{~min}: 1$ Form C type) (Detection current: 10 mA .)	
		Between contact and coil	1,500 Vrms for 1 min.$(1,000$ Vrms for $1 \mathrm{~min}: 1$ Form C type) (Detection current: 10 mA .)	
	Temperature rise		Max. $65^{\circ} \mathrm{C}$(By resistive method, nominal coil voltage applied to the coil, contact carrying current: 2A.)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [10 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $5 \mathrm{~ms}[10 \mathrm{~ms}]$ (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional*2	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 5 mm	
Expected life	Mechanical		Min. 10^{8} (107: 1 Form C latching type) (at 600 cpm)	
	Electrical		Min. 5×10^{5} rated load (at 60 cpm)	
Conditions	Conditions for operation, transport and storage ${ }^{\text {*3 }}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		60 cpm	
Unit weight			Approx. 3 g .11 oz	Approx. 4 g .140 z

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (TX/TX-S/TX-D relay AgPd contact type are available for low level load switching [10V DC, 10 mA max. level])
*2 Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*3 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

REFERENCE DATA

1. Maximum switching capacity

2. Operate and release time characteristics (2 Form C single side stable type)
Test condition: Without diode connected to coil in parallel

3. Life curve (Resistive load)

4. Contact reliability for AC loads Tested sample: DS2E-S-DC24V 10 pcs. Operating speed: 20 cpm . Detection level: $200 \mathrm{~m} \Omega$

5-(1). Influence of adjacent mounting (1 Form C)

5-(2). Influence of adjacent mounting (2 Form C)

DIMENSIONS (mm inch)

DS (1 Form C)

Single side stable, 2 coil latching

CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$

Note: External dimensions of 1 coil latching types are same as single side stable type.

PC board pattern (Bottom view)

Single side stable
2 coil latching

Schematic (Bottom view)
Single side stable

(Deenergized condition)

2 coil latching

(Reset condition)

DS (2 Form C)

Single side stable

CAD Data

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Schematic (Bottom view)

(Deenergized condition)

DS (2 Form C)

2 coil latching

CAD Data External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Schematic (Bottom view)

(Reset condition)

NOTES

1. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Low Signal Relays - PCB category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
LZN4-US-DC12 LZNQ4-US-DC24 LZNQ4-US-DC48 6-1393813-4 6-1462039-0 6-1617347-5 6-1617353-3 6-1617529-6 M39016/20054M M39016/27-030M 67RPCX-3 MAHC-5494 D3493L 7-1393809-0 7-1393813-3 741B8 7556072001 MF-11AM-24 MF1201N12 MF-17A-24 FBR244D012/02CP FBR244D024/02CS 80.010.4522.1 FL-4036 FLH-11D-6 831A7 MMS124 FTR-B4GA006Z FW1102S06 FW1201S39 FW1210S02 FW1521S01 FW5A1201S14 9-1393813-6 9-1617582-5 G6AK-2-H-DC5 G6E-184P-ST-US-DC48 G6G234CDC24 A07A939BZ1-0388 A150-0005 PZ-2A2420 HB1-DC6V HB1-DC9V R10-14A10-240 R10-14D10-12 R10-5A10-120F R10-E1L8-S200 R10-E2468-1 R10-E4Z2-V700 R10-T1L2N-115V

[^0]: Note: * Nominal coil voltage 1.5 V type are 1 Form C only.

[^1]: * Nominal coil voltage 1.5 V type are 1 Form C only.

