TUV

Panasonic ideas for life

RoHS compliant

FEATURES

1. Compact with high contact rating

Even with small $10 \mathrm{~mm} .394 \mathrm{inch}(\mathrm{H}) \mathrm{x}$ 11 mm .433 inch (W) x 20 mm .787
inch (L) (dimensions, high capacity switching is provided: 1a, 8 A 250 V AC; 2a and 1a1b, 5 A 250 V AC.
2. High switching capability High contact pressure, low contact bounce, and wiping operation improve resistance to weld bonding. Resistant against lamp load and dielectric loading: 1a achieves maximum switching capacity of $2,000 \mathrm{VA}$ (8A 250 V AC).

3. High sensitivity

Using the same type of highperformance polar magnetic circuits as DS relays, by matching the spring load to the magnetic force of attraction, greater sensitivity has been achieved. The resultant pick up sensitivity of about 190 mW makes possible direct driving of transistors and chips.
4. High breakdown voltage

Breakdown voltage has been raised by keeping the coil and contacts separate.

Between contact and coil	Between contacts
$3,000 ~ \mathrm{Vrms}$ for 1 min. $5,000 \mathrm{~V}$ surge breakdown voltage	$1,000 \mathrm{Vrms}$ for 1 min. $1,500 \mathrm{~V}$ surge breakdown voltage
Conforms with FCC Part 68	

5. Latching types available

6. Wide variation

Three types of contact arrangement are offered: 1a, 2a, and 1a1b. In addition, each is available in standard and reversed polarity types.
7. Sealed construction allows automatic washing.
8. Complies with safety standards Complies with Japan Electrical Appliance and Material Safety Law requirements for operating 200 V power supply circuits, and complies with UL, CSA, and TÜV safety standards.
9. Sockets are available.

ORDERING INFORMATION

[^0]
TYPES

Contact arrangement	Nominal coil	Single side stable	2 coil latching
	voltage	Part No.	Part No.
1 Form A	3V DC	DSP1a-DC3V	DSP1a-L2-DC3V
	5V DC	DSP1a-DC5V	DSP1a-L2-DC5V
	6V DC	DSP1a-DC6V	DSP1a-L2-DC6V
	9V DC	DSP1a-DC9V	DSP1a-L2-DC9V
	12 V DC	DSP1a-DC12V	DSP1a-L2-DC12V
	24V DC	DSP1a-DC24V	DSP1a-L2-DC24V
$\begin{aligned} & 1 \text { Form } A \\ & 1 \text { Form } B \end{aligned}$	3V DC	DSP1-DC3V-F	DSP1-L2-DC3V-F
	5V DC	DSP1-DC5V-F	DSP1-L2-DC5V-F
	6V DC	DSP1-DC6V-F	DSP1-L2-DC6V-F
	9V DC	DSP1-DC9V-F	DSP1-L2-DC9V-F
	12 V DC	DSP1-DC12V-F	DSP1-L2-DC12V-F
	24V DC	DSP1-DC24V-F	DSP1-L2-DC24V-F
2 Form A	3V DC	DSP2a-DC3V	DSP2a-L2-DC3V
	5V DC	DSP2a-DC5V	DSP2a-L2-DC5V
	6V DC	DSP2a-DC6V	DSP2a-L2-DC6V
	9 V DC	DSP2a-DC9V	DSP2a-L2-DC9V
	12 V DC	DSP2a-DC12V	DSP2a-L2-DC12V
	24V DC	DSP2a-DC24V	DSP2a-L2-DC24V

Standard packing: Carton: 50 pcs.; Case: 500 pcs.
Note: Reverse polarity type are manufactured by lot upon receipt of order. Self-clinching types are also available, please consult us.

* For sockets, see page 100.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	100 mA	30Ω	300 mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			60 mA	83Ω		
6 V DC			50 mA	120Ω		
9 V DC			33.3 mA	270Ω		
12V DC			25 mA	480Ω		
24V DC			12.5 mA	1,920 Ω		

2) 2 coil latching

Nominal coil voltage	Set voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil resistance$[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	100 mA	100 mA	30Ω	30Ω	300 mW	300 mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			60 mA	60 mA	83Ω	83Ω			
6V DC			50 mA	50 mA	120Ω	120Ω			
9V DC			33.3 mA	33.3 mA	270Ω	270Ω			
12V DC			25 mA	25 mA	480Ω	480Ω			
24V DC			12.5 mA	12.5 mA	1,920	1,920			

2. Specifications

Characteristics	Item		Specifications		
Contact	Arrangement		1 Form A	1 Form A 1 Form B	2 Form A
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)		
	Contact material		Au-flashed AgSnO_{2} type		
Rating	Nominal switching capacity (resistive load)		8 A 250 V AC, 5A 30V DC	5 A 250 V AC, 5 A 30 V DC	
	Max. switching power (resistive load)		2,000 VA, 150 W	1,250 VA, 150 W	
	Max. switching voltage		250 V AC, 125 V DC		
	Max. switching current		8 A AC, 5 A DC	5 A AC, DC	
	Nominal operating power		300 mW		
	Min. switching capacity (Reference value)*1		10 m A 5 V DC		
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)		
		Between contact sets	2,000 Vrms (1 Form A 1 Form B, 2 Form A) (Detection current: 10 mA .)		
		Between contact and coil	$3,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)		
	Surge breakdown voltage*2	between contacts and coil	$5,000 \mathrm{~V}$		
	Temperature rise (coil) (at $65^{\circ} \mathrm{C} 149^{\circ} \mathrm{F}$)		Max. $55^{\circ} \mathrm{C}$	Max. $40^{\circ} \mathrm{C}$	Max. $55^{\circ} \mathrm{C}$
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [10 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [10 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)		
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $\left.10 \mu \mathrm{~s}.\right)$		
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)		
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2 mm (Detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	10 to 55 Hz at double amplitude of 3.5 mm		
Expected life	Mechanical		Min. 5×10^{7} (at 180 times/min.)		
	Electrical		Min. 10^{5} (resistive load)		
Conditions	Conditions for operation, transport and storage*3 (Not freezing and condensing at low temperature)		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$	Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$	Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$
	Solder heating		$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}(10 \mathrm{~s}), 300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}(5 \mathrm{~s}), 350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}(3 \mathrm{~s})$(Soldering depth: $2 / 3$ terminal pitch)		
	Max. operating speed		3 cps		
Unit weight			Approx. $4.5 \mathrm{~g} \mathrm{g}$.		

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-198
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

4.-(1) Operate \& release time (without diode, 1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

4.-(4) Operate \& release time (with diode, 1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

5.-(1) Change of pick-up and drop-out voltage (1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

4.-(2) Operate \& release time (without diode, 1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs.

4.-(5) Operate \& release time (with diode, 1 Form A 1 Form B) Tested sample: DSP1-DC12V, 5 pcs.

5.-(2) Change of pick-up and drop-out voltage (1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs.

4.-(3) Operate \& release time (without diode, 2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.)

4.-(6) Operate \& release time (with diode, 2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

5.-(3) Change of pick-up and drop-out voltage (2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

6.-(1) Influence of adjacent mounting (1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

6.-(2) Influence of adjacent mounting (1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs.

6.-(3) Influence of adjacent mounting (2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

DIMENSIONS (mm inch) The CAD data of the products with a CAD Dala makk can be downloaded from: htpp:/industrial.panasonic.commacele/

1. 1 Form A type

CAD Data

Single side stable
External dimensions
2 coil latching

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)
Single side stable
2 coil latching

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)
Single side stable
2 coil latching

2. 1 Form A 1 Form B type

CAD Data

General tolerance: $\pm 0.3 \pm .012$
3. 2 Form A type

CAD Data

SAFETY STANDARDS

Item	UL/C-UL (Recognized)		CSA (Certified)		TÜV (Certified)	
	File No.	Contact rating	File No.	Contact rating	File No.	Rating
1 Form A	E43028	8A 250V AC 1/6HP 125, 250V AC 5A 30V DC	LR26550 etc.	8A 250V AC 1/6HP 125, 250V AC 5A 30V DC	$\begin{aligned} & \hline \text { B } 0210 \\ & 13461238 \end{aligned}$	8A 250V AC $(\cos \phi=1.0)$ 5A 250V AC $(\cos \phi=0.4)$ 5A 30V DC
1 Form A 1 Form B	E43028	$\begin{aligned} & \text { 5A 250V AC } \\ & \text { 1/6HP 125, 250V AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	LR26550 etc.	5A 250V AC 1/6HP 125, 250V AC 5A 30V DC	$\begin{aligned} & \text { B } 0210 \\ & 13461238 \end{aligned}$	$\begin{aligned} & \text { 5A 250V AC }(\cos \phi=1.0) \\ & 3 \text { A } 250 \mathrm{~V} \mathrm{AC}(\cos \phi=0.4) \\ & 5 \mathrm{~A} \mathrm{30V} \mathrm{DC} \end{aligned}$
2 Form A	E43028	$\begin{aligned} & \text { 5A 250V AC } \\ & 1 / 10 \mathrm{HP} 125,250 \mathrm{~V} \mathrm{AC} \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	LR26550 etc.	$\begin{aligned} & \text { 5A 250V AC } \\ & 1 / 10 \mathrm{HP} 125,250 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & \hline \text { B } 0210 \\ & 13461238 \end{aligned}$	$\begin{aligned} & \text { 5A 250V AC }(\cos \phi=1.0) \\ & 3 \mathrm{~A} 250 \mathrm{VAC}(\cos \phi=0.4) \\ & \text { 5A 30V DC } \end{aligned}$

* Remarks: The standard certified for may differ depending on where the product was manufactured.

NOTES

1. Soldering conditions

Please obey the following conditions when soldering automatically.

1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ and within 120 seconds
2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ and within 6 seconds

2. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.

3. External magnetic field

Since DY relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different.
5. When using, please be aware that the a contact and b contact sides of 1 Form A and 1 Form B types may go on simultaneously at operate time and release time.

For Cautions for Use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Panasonic manufacturer:
Other Similar products are found below :
ECE-A1HKAR47 ELK-EA102FA ELC-09D151F EEC-S0HD224H ELL-5PS3R3N HC2-H-DC48V-F HL2-HP-AC120V-F HL2-HP-DC12V-F HL2-HP-DC6V-F HL2-HP-DC24V-F HC4-H-DC24V HL2-HTM-DC24V-F HL2-HTM-AC24V-F HC3-HL-AC120V-F HC4-HAC120V AMV9003 EEC-RG0V155H AZH2031 RP-SDMF64DA1 RP-SDMF32DA1 EEF-UD0K101R RP-SMLE08DA1 EVMF6SA00B55 ELC-12D101E ERA-3YEB272V EEC-RF0V684 ERA-3YEB153V ELC-3FN2R2N ERA-3YEB512V ERJ-1GEJ564C ERZV20R391 ELL-6RH221M ETQ-P3W3R3WFN ELL-ATV681M ELL-VGG4R7N EEF-UD0J101R ECQ-U2A474ML LC-R121R3P ELKEA100FA ECQ-U2A154ML ELK-E101FA ERA-3YEB303V ERA-V15J100V ERZ-V05V680CB EEF-UE0K101R EEC-S0HD224V EVQPAC05R EVQ-PAG04M ELK-EA222FA ERJ-1GEJ684C

[^0]: Notes: 1. Reverse polarity types available (add suffix-R)
 2. Certified by UL, CSA and TÜV

