Issue No.	: E-CXES-ML-5000
Date of Issue	: April 27, 2009
Classification	: New , Changed

PRODUCT SPECIFICATION FOR APPROVAL

Product Description : Specialty Polymer Aluminum Electrolytic Capacitor

Customer Part Number

Product Part Number

: EEF****** (CD/CX/UE/S Series)

Country of Origin

: Japan, Singapore Printed on the packaging label

Applications : Personal Computer

If you approve this specification, please fill in and singn the below and return 1copy to us.

Approval No

Approval Date

Executed by

(signature)

Title

Dept.

Capacitor Business Unit

Panasonic Electronic Devices Co., Ltd

25.Kohata-nishinaka.Uji City, Kyoto, 611-8585, Japan Phone (0774)32 - 1111

Phone: +81-774-31-7300(Direct)

Fax: +81-774-33-4924

Panasonic Electronic Devices Singapore

Pte. Ltd.

No.3 Bedok South Road, Singapore 469269,

THE REPUBLIC OF SINGAPORE

Prepared by : Engineering Group

Engineering 2 Team

Contact Person

Signature

Name(Print) M.Tahara

Title : Engineer

Checked by

Signature

Name(Print) H.Yamamoto

Title : Manager

Authorized by

Signature

Name(Print) Y.Midou

: General Manager of Engineering Title

No. 4146006

Product Specification		E-CXES-ML-500
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	Page No. Contents	
Contents		
Notice matter	P.1	
Scope	P.2	
Parts Number	P.2	
Parts Lists	P.3	
Dimensions and Appearance	P.3	
Marking	P.4	
Specifications	P.4	
Performance Characteristics	P.5 to P.7	
Embossed tape dimension	P.8	
Package Specifications	P.9 to P.10	
Application Guidelines	P.11 to P.13	
Maximum permissible reflow soldering temperature profile	P.14 to P.15	

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	1

Notice matter

- ◆ Law and regulation which are applied
 - This product complies with the RoHS Directive (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment DIRECTIVE 2002/95/EC).
 - No Ozone Depleting Chemicals(ODC's), controlled under the Montreal Protocol Agreement, are used in producing this product.
 - · We do not PBBs or PBDEs as brominated flame retardants.
 - · All the materials that are used for this product are registered as "Known Chemicals" in the Japanese act "Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances".
 - Export procedure which followed export related regulations, such as foreign exchange and a foreign trade method, on the occasion of export of this product Thank you for your consideration.
- Limitation of a use
 - This capacitor is designed to be used for electronics circuits such as audio/visual equipment, home appliances, computers and other office equipment, optical equipment, measuring equipment and industrial robots.

High reliability and safety are required [be / a possibility that incorrect operation of this product may do harm to a human life or property] more. When use is considered by the use, the delivery specifications which suited the use separately need to be exchanged.

- Country of origin : JAPAN,SINGAPORE
- Manufacturing factory : Capacitor Business Unit

Panasonic Electronic Devices Co., Ltd

25, Kohata-nishinaka, Uji City, Kyoto 611-8585 Japan

Panasonic Electronic Devices Singapore Pte. Ltd. No.3 Bedok South Road, Singapore 469269, THE REPUBLIC OF SINGAPORE

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	2

1. Scope

This specification applies to specialty polymer aluminum electrolytic capacitors (CD/CX/UE/S) for use electronic equipment.

2. Explanation of Part Numbers

- 2-1 Common code Specialty Polymer Aluminum Electrolytic Capacitor
- 2-2 Series and Size code CD/CX/UE/S

2-3 Rated Voltage Code

R.V. code	0D	0E	0G	0J	0K
R.V.(V.DC)	2	2.5	4	6.3	8

2-4 Capacitance Code : Indicating capacitance in μF by 3 letters.

The first 2 figures are actual values and the third denotes the number of zeros. "R" denotes the decimal point and all figures are the actual number with "R". ex: $4.7\mu\text{F}$ ---- 4R7 $10\mu\text{F}$ ---- 100

2-5 Suffix Code

Series and Size code	Suffix code	Packaging Style
СХ	R	High temperature reflow type with taping (for lead free solder)
	YR	Cap.Tol: -35 to 10% High temperature reflow type with taping (for lead free solder)
CD/UE/S	YR	Cap.Tol: -35 to 10% Taping
	R/ER/MR	High temperature reflow type with taping (for lead free solder)
	XE	Low ESR type High temperature reflow type with taping (for lead free solder)
	EY	Cap.Tol: -35 to 10% High temperature reflow type with taping (for lead free solder)
	E4	Low ESR(4.5mΩ max.) type High temperature reflow type with taping (for lead free solder)
	E7	Low ESR(7mΩ max.) type High temperature reflow type with taping (for lead free solder)
	G4	Cap.Tol: -35 to 10% Low ESR(4.5mΩ max.) type High temperature reflow type with taping (for lead free solder)

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	3

Parts Lists (CD Series)

1 4110 21010 (02 00110	٠,						
	Rated	Cap.	tanδ	L.C.	ESR	Permissible	Tolerance
Dowt was box	Voltage	(µF)	max.	(µA)	$(m\Omega)$	Ripple	on cap.
Part number	(V.DC)			max.	(100kHz,20°C)	Current	(%)
					max.	A r.m.s* 1	
EEFCD0D151ER	2	150	0.06	30.0	18	2.5	±20
EEFCD0E101R	2.5	100	0.06	25.0	18	2.5	±20
EEFCD0J470ER	6.3	47	0.06	29.7	18	2.5	±20
EEFCD0J680MR	6.3	68	0.06	42.9	18	2.5	±20

^{*1 100}kHz/ 20°C to 105°C

Parts Lists (CX Series)

,	Rated	Cap.	tanδ	L.C.	ESR	Permissible	Tolerance
Part number	Voltage	(µF)	max.	(µA)	$(m\Omega)$	Ripple	on cap.
Part number	(V.DC)			max.	(100kHz,20°C)	Current	(%)
					max.	A r.m.s* 1	
EEFCX0D221R	2	220	0.06	44.0	15	2.7	±20
EEFCX0D221YR	2	220	0.06	44.0	15	2.7	+10/-35
EEFCX0D331R	2	330	0.06	66.0	15	2.7	±20
EEFCX0D331YR	2	330	0.06	66.0	15	2.7	+10/-35
EEFCX0E331R	2.5	330	0.06	82.5	15	2.7	±20
EEFCX0G151R	4	150	0.06	60.0	15	2.7	±20
EEFCX0G221YR	4	220	0.06	88.0	15	2.7	+10/-35
EEFCX0J101R	6.3	100	0.06	63.0	15	2.7	±20
EEFCX0J151YR	6.3	150	0.06	94.5	15	2.7	+10/-35

^{*1 100}kHz/ 20°C to 105°C

Parts Lists(UE Series)

	Rated Voltage	Cap. (µF)	tanδ max.	L.C. (µA)	ESR (mΩ)	Permissible Ripple	Tolerance on cap.
Part number	(V.DC)	(μι)	IIIax.	max.	(100kHz,20°C)	Current	(%)
					max.	A r.m.s* 1	
EEFUE0J221ER	6.3	220	0.1	138.6	15	3.0	±20
EEFUE0K101ER	8	100	0.1	80.0	12	3.3	±20

^{*1 100}kHz/ 20°C to 105°C

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	3

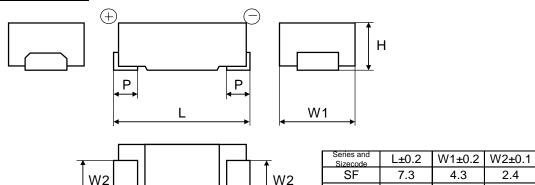
Parts Lists (S Series)

	Rated	Cap.	tanδ	L.C.	ESR	Permissible	Tolerance
Part number		(μF)	max.	(µA)	$(m\Omega)$	Ripple	on cap.
Fait number	(V.DC)			max.	(100kHz,20°C)	Current	(%)
					max.	A r.m.s* 1	
EEFSF0D101ER	2	100	0.06	20.0	9	3.0	±20
EEFSL0D101ER	2	100	0.06	20.0	0	3.0	±20
EEFSX0D221EY	2	220	0.06	44.0	9	3.0	+10/-35
EEFSX0D221ER	2	220	0.06	44.0	9	3.0	±20
EEFSX0D221E7	2	220	0.06	44.0	7	3.4	±20
EEFSX0D331ER	2	330	0.06	66.0	9	3.0	±20
EEFSX0D331XE	2	330	0.06	66.0	6	3.5	±20
EEFSX0D331EY	2	330	0.06	66.0	9	3.0	+10/-35
EEFSX0D331E4	2	330	0.06	66.0	4.5	3.8	±20
EEFSX0D471ER	2	470	0.06	94.0	9	3.0	±20
EEFSX0D471E4	2	470	0.06	94.0	4.5	3.8	±20
EEFSX0D471G4	2	470	0.06	94.0	4.5	3.8	+10/-35
EEFSX0E331EY	2.5	330	0.06	82.5	9	3.0	+10/-35
EEFSD0D331ER	2	330	0.10	66.0	7	3.5	±20
	EEFSLOD101ER EEFSX0D221EY EEFSX0D221ER EEFSX0D221E7 EEFSX0D331ER EEFSX0D331XE EEFSX0D331EY EEFSX0D331E4 EEFSX0D471ER EEFSX0D471E4 EEFSX0D471G4 EEFSX0E331EY	Part number Voltage (V.DC) EEFSF0D101ER 2 EEFSL0D101ER 2 EEFSX0D221EY 2 EEFSX0D221ER 2 EEFSX0D221E7 2 EEFSX0D331ER 2 EEFSX0D331EY 2 EEFSX0D331EY 2 EEFSX0D471ER 2 EEFSX0D471E4 2 EEFSX0D471G4 2 EEFSX0E331EY 2.5	Part number Voltage (V.DC) (μF) EEFSF0D101ER 2 100 EEFSL0D101ER 2 100 EEFSX0D221EY 2 220 EEFSX0D221ER 2 220 EEFSX0D221E7 2 220 EEFSX0D331ER 2 330 EEFSX0D331XE 2 330 EEFSX0D331EY 2 330 EEFSX0D471ER 2 470 EEFSX0D471G4 2 470 EEFSX0E331EY 2.5 330	Part number Voltage (V.DC) (μF) max. EEFSF0D101ER 2 100 0.06 EEFSL0D101ER 2 100 0.06 EEFSX0D221EY 2 220 0.06 EEFSX0D221ER 2 220 0.06 EEFSX0D221E7 2 220 0.06 EEFSX0D331ER 2 330 0.06 EEFSX0D331XE 2 330 0.06 EEFSX0D331EY 2 330 0.06 EEFSX0D471ER 2 470 0.06 EEFSX0D471E4 2 470 0.06 EEFSX0D471G4 2 470 0.06 EEFSX0E331EY 2.5 330 0.06	Part number Voltage (V.DC) (μF) max. (μA) max. EEFSF0D101ER 2 100 0.06 20.0 EEFSL0D101ER 2 100 0.06 20.0 EEFSX0D221EY 2 220 0.06 44.0 EEFSX0D221ER 2 220 0.06 44.0 EEFSX0D221E7 2 220 0.06 44.0 EEFSX0D331ER 2 330 0.06 66.0 EEFSX0D331XE 2 330 0.06 66.0 EEFSX0D331EY 2 330 0.06 66.0 EEFSX0D471ER 2 470 0.06 94.0 EEFSX0D471G4 2 470 0.06 94.0 EEFSX0E331EY 2.5 330 0.06 82.5	Part number Voltage (V.DC) (μF) max. (μA) max. (mΩ) (100kHz,20°C) max. EEFSF0D101ER 2 100 0.06 20.0 9 EEFSL0D101ER 2 100 0.06 20.0 9 EEFSX0D221EY 2 220 0.06 44.0 9 EEFSX0D221ER 2 220 0.06 44.0 9 EEFSX0D221E7 2 220 0.06 44.0 7 EEFSX0D331ER 2 330 0.06 66.0 9 EEFSX0D331EY 2 330 0.06 66.0 9 EEFSX0D471ER 2 470 0.06 94.0 4.5 EEFSX0D471G4 2 470 0.06 94.0 4.5 EEFSX0E331EY 2.5 330 0.06 82.5 9	Part number Voltage (V.DC) (μF) max. (μA) max. (μA) (100kHz,20°C) max. Ripple Current A r.m.s* 1 EEFSF0D101ER 2 100 0.06 20.0 9 3.0 EEFSL0D101ER 2 100 0.06 20.0 9 3.0 EEFSX0D221EY 2 220 0.06 44.0 9 3.0 EEFSX0D221ER 2 220 0.06 44.0 9 3.0 EEFSX0D331ER 2 230 0.06 66.0 9 3.0 EEFSX0D331EY 2 330 0.06 66.0 9 3.0 EEFSX0D331EY 2 330 0.06 66.0 9 3.0 EEFSX0D471ER 2 470 0.06 94.0 4.5 3.8 EEFSX0D471G4 2 470 0.06 94.0 4.5 3.8 EEFSX0E331EY 2.5 330 0.06 82.5 9 3.0

^{*1 100}kHz/ 20°C to 105°C

V.DC µF	2 (0D)		2.5 (0E)		4 (0G)			6.3 (0J)		8 (0K)		
μ'	Std.	CX	S	Std.	CX	S	Std.	CX	S	Std.	CX	Std.
47 (470)										CD		
68 (680)										CD		
100 (101)			SF	CD							CX	UE
150 (151)	CD		SL					CX			CX	
220 (221)		CX	SX					CX		UE		
330 (331)		CX	SX,SD		CX	SX						
470 (471)			SX									

^() shows R.V and capacitance code.


Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	4

3. Appearance, Dimensions

3.1 Appearance

By visual inspection, no deep cracks and blemishes.

3.2 Dimensions

Surface finish of terminal : Tin(Sn)

CD/SL

CX/SX

SD

UE

4. Marking

The following items on the capacitor' surface shall be legible during appearance inspection. These markings shall be shown by the method of indelible way.

- (1) Rated Voltage
- (2) Capacitance
- (3) Polarity
- (4) Lot No

(Notes) Body Color : Black Marking : Laser

Code	Item
Α	Polarity bar (Positive)
В	R.V. code
C*	Cap.
D	Lot No.

^{* &}quot;R" shows the decimal point.

R.V.code

Marking code	d	е	g	j	k
R.V(V.DC)	2	2.5	4	6.3	8

7.3

7.3

7.3

7.3

4.3

4.3

4.3

4.3

2.4

2.4

2.4

2.4

(mm)

P±0.3

1.3

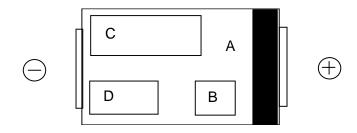
1.3

1.3

1.3

1.3

Н


1.5±0.1

1.8±0.1

1.9±0.2

2.8±0.2

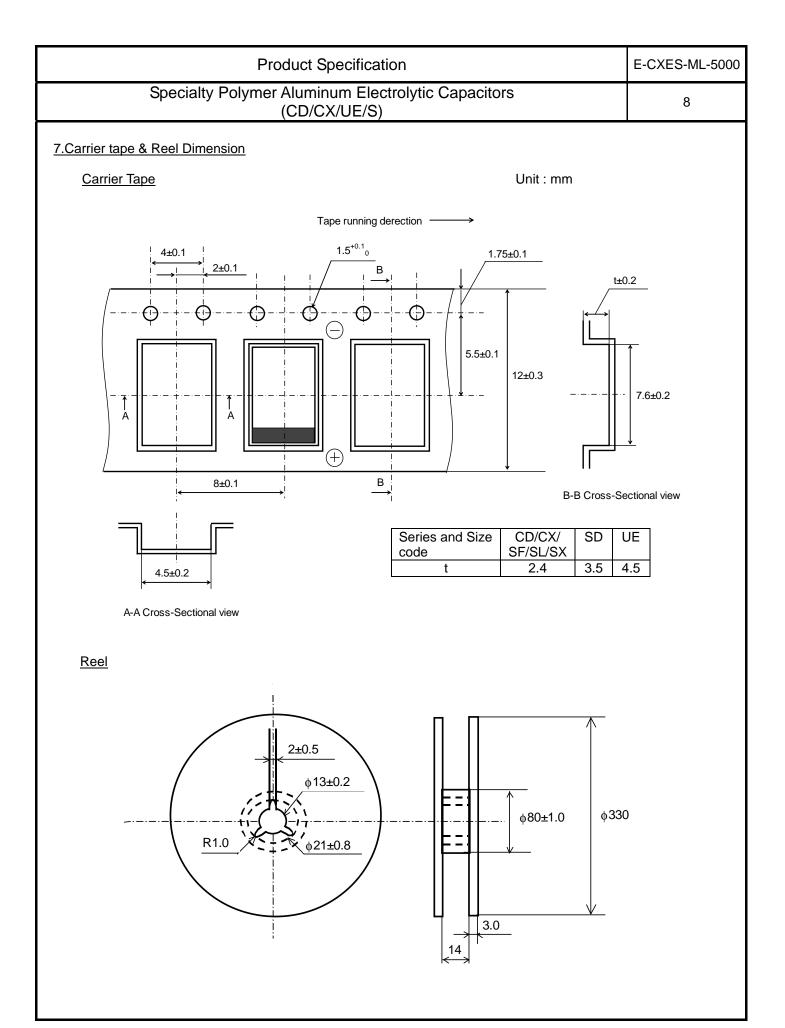
4.2±0.1

5. Specifications

	Item	Specifications						
1	Category temperature range	-40°C to 105°C						
2	Rated voltage	2V to 8V						
3	Capacitance	47μF to 470μF (120Hz 20°C)						
4	Tolerance on capacitance		See attached individual specification(P.3)					
5	Surge(V.DC)	V.DC	2	2.5	4	6.3	8	
5	Surge(v.DC)	Surge	2.5	3.1	5	8	10	
6	6 Rated ripple current See attached in					al speci	fication	(P.3)

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	5

6. Characteristics

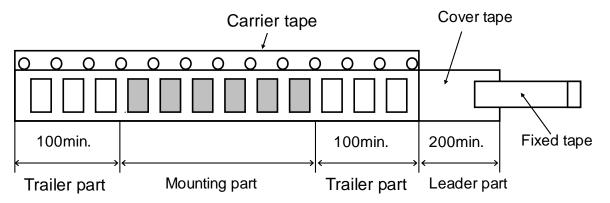

No	Item	(Characteristic	cs	Outline of test method
1	Leakage current	I≤0.1CV		Measuring: 2m If you have dounglease re-check Pre-conditionin Apply rated I series resisted.	e: Rated Voltage hin ubts about the measured result, k after the pre-conditioning explained below. hg DC voltage for 1h at 105°C through 1000Ω hor: Then discharge and keep in the room
2	Capacitance tolerance	See attached specification(Measuring free	for 24h to 48h quency: 120Hz±10% uit: Equivalent series circuit
3	tanδ	See attached specification(individual	Measuring volt	age: +0V.DC≤0.5Vrms
4	ESR	See attached (P.3)			Measuring frequency: 100kHz±10% Measuring voltage: +0V.DC, ≤0.5Vrms Measuring temperature: 20°C
5	Solder- ability	More than 75 covered by ne		ninal face are	Solder type: H60A or H63A Flax: About 25% rosin density melted ethanol Solder temperature: 230±5°C Immersing time: 2±0.5s
6	Solubility resistance to marking	Appearance:		ole abnormal I be occurred.	Class of reagent: Extra grade 2-propanol (JIS K8839) or superior. Test temperature: 20°C to 25°C Immersing time: 30±5s
7	Solder heat resistance	Leakage Current Capacitance Change tanδ Appearance	measured value of No remarkal	ial alue.	The capacitor is held on heating for reflow soldering. Reflow soldering profile: Please refer to Chapter 10 (Page 14 to 15)
8	Adhesion	Appearance: Without me breaks afte	chanical dam	nage such as	Push direction: Side Force: 5.0N Holding time: 10±0.5s
9	Damp heat, Steady state	Current Capacitance Change tanδ Appearance	+60%,-20% +50%,-20% +40%,-20% of initial me ≤200% of i value. No remarka	% (2V,2.5V) % (4V) % (6.3V)	Test temperature: 60±2°C Relative humidity: 90% Test time: 500 ⁺²⁴ ₀ h

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	6

No	Item		(Chara	cteristics	Outline of test method		
10	Damp heat, Steady state (Applied voltage)	Leakage Current ≤The value of item 1. Capacitance Change +70%,-20% (2V,2.5V) +60%,-20% (4V) +50%,-20% (6.3V) +40%,-20% (8V) of initial measured value.			%,-20% (2V,2.5V) %,-20% (4V) %,-20% (6.3V) %,-20% (8V)	Test temperature: 60±2°C Relative humidity: 90% Applied voltage: Rated voltage Test time: 500 ⁺²⁴ ₀ h		
		tanδ Appe	arance	value No re	% of initial specified e. emarkable abnormal ge shall be occurred.			
11	Endurance	Chan tanδ	ent icitance	±10% value ≤The No re	e value of item 1. 6 of initial measured	Test temperature: 105±2°C Applied voltage: Rated voltage Test time: 1000 ⁺⁴⁸ ₀ h		
12	Shelf life	Chan tanδ	ent icitance	≤The ±10% value ≤The No re	e value of item 1. 6 of initial measured	Test temperature: 105±2°C Test time: 500 ⁺²⁴ ₀ h		
13	Characteristics at high and low temperature	2 4 5	ESR Capacit Leakag	ance	Electrical Characteristics	Exposure the capacitor at each temperature in following order and measure characteristics at step 2,4 and 5 as described on the left. Step Temperature		

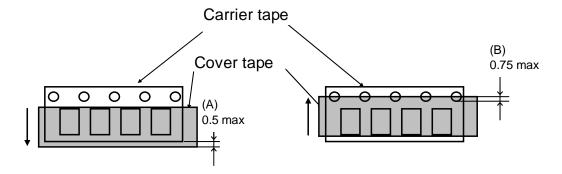
Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	7

No	Item	(Characteristics	Outline of test method
14	Surge	Leakage current	≤The value of item 1.	Test temperature: 15°C to 35°C Series resister: 1000Ω
		Capacitance ±10% of initial change measured value.		Test voltage: Surge Applied voltage: 1000 cycles of 30±5s
		tanδ	≤The value of item 3.	"ON" and 5min 30s "OFF"
		Appearance	No remarkable abnormal change shall be occurred.	
15	Vibration	Capacitance:	No remarkable abnormal change shall be occurred. During test, measured value to be stabilized. (When measured several times within 30min before completion of test.)	Frequency: 10Hz to 2000Hz to 10Hz (One cycle per 20min) Total amplitude: 1.5mm Direction and duration of vibration: 2h each for tree right-angle direction, total 6h. Mounting method: The capacitor must be soldered in place.


Panasonic Electronic Devices Co.,Ltd

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	9

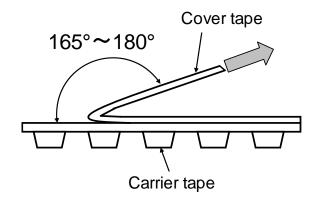
Unit: mm


8. Packaging details of carrier tape

8.1 Details of carrier tape

Direction of feed

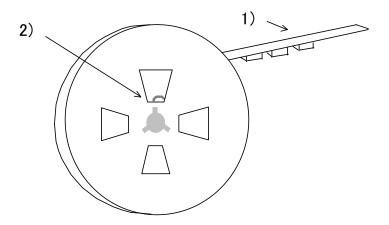
The cover tape shall not cover the sprocket holes



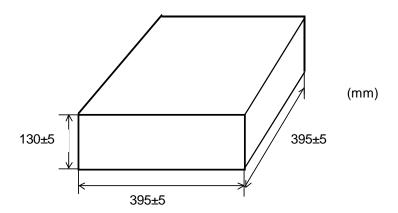
- a. Deviation between carrier tape and cover tape shall be less than 0.5mm
- b. Cover tape shall not be covered on the feeding holes more than 0.75mm

8.2 Adhesion test

Reasonable pulling strength: 0.1N to 1.3N


Pulling speed: 0.005m/s

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	10


8.3 Packaging style

- 1) Carrier tape shall be reeling inside.(seal tape shall be outside.)
- 2) First of the carrier tape shall be inserted directly to the reel as shown in the below figure and leader part of seal tape shall not be attached.

8.4 Dimensions of outer carton box

Dimensions of the carton box are subject to change without notice for adjustment to reel size.

8.5 Packaging quantity

Series code	Quantity		
Selles code	1 Reel(pcs)	1 Packaging box(reel)	Total Quantity(pcs)
CD/CX/SL/SX	3,500	5	17,500
UE/SD	2,000	5	10,000

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	11

9. Application Guidelines

Specialty Polymer Aluminium Electrolytic Capacitor should be used in compliance with the following guidelines.

- (1) This specification guarantees the quality and performance of the product as individual components. Before use, check and evaluate their compatibility with installed in your products.
- (2) Do not use the products beyond the specifications described in this document.

9.1 Circuit Design

9.1.1 Prohibited Circuits for use

Do not use the capacitor with the following circuit.

- (1) Time-constant circuit
- (2) Coupling circuits
- (3) 2 or more capacitors connected serially
- (4) Circuit which are greatly affected by leakage current

9.1.2 Voltage

The application of over- voltage and reverse voltage described below can cause increases in leakage current and short circuits.

Applied voltage, refers to the voltage value including the peak value of the transitional Instantaneous voltage and the peak value of ripple voltage, not just steady line voltage.

Design your circuit so than the peak voltage does not exceed the stipulated voltage.

[Over-voltage]

Do not apply over-voltage in excess of the rated voltage.

Do not apply voltage, which exceeds the full rated voltage when the capacitors receive impulse voltage, instantaneous high voltage, high pulse voltage etc.

[Reverse-voltage]

Do not apply reverse-voltage

9.1.3 Ripple Current

Use the capacitors within the stipulated permitted ripple current.

When excessive ripple current is applied to the capacitor, if causes increases in leakage current and short circuits due to self-heating.

Even when using the capacitor under the permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

9.1.4 Leakage Current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range.

However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

- (1) After re-flow
- (2) Shelf conditions such as (1) high temperature with no load, (2) high temperature high humidity with no load and (3) sudden temperature changes.

9.1.5 Failure Rate

The majority of failure modes are short circuits or increases in leakage current.

The main factors of failure are mechanical stress, heat stress and electric stress due to re-flow and heat from the use temperature environment.

Even within the stipulated limits, it is possible to lower the failure rate by reducing use conditions such as temperature and voltage. Please be sure to have ample margin in your design.

- [Expected Failure Rate]
 - (1) Date based on our reliability tests: 46Fit or less (Based on applied rated voltage at 105°C)
 - (2) Market failure rate: 0.13Fit or less (Based on c=0, Reliability standard: 60%)

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	12

Always consider safety when designing equipment and circuit. Plan for worst-case failure modes such as short circuits and open circuits which might occur during use.

Install the following systems for a failsafe design to ensure safety if these products are to be used in equipment where a defect in these products may cause the loss of human life or other signification damage, such as damage to vehicles (automobile, train, vessel), medical equipment, traffic lights, aerospace equipment, electric heating appliances, combustion/gas equipment, rotating equipment, and disaster/crime prevention equipment.

- (1) The system is equipped with a protection circuit and protection device.
- (2) The system is equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault.

9.2 Environments and Soldering for Using Capacitors

9.2.1 Storage

Products should be stored in a moisture proof environment. Storage conditions before and after opening the moisture proof packaging as follows.

(If these conditions are exceeded, the package may absorb moisture and there is a risk of damage to the exterior due to heat stress during mounting.)

[Environment of storage]

Temperature: 5°C to 30°C without direct sunlight

Humidity: Less than 70%

Maximum storage term before opening the package: JEDEC J-STD-020C MSL: Level 2

(2 years after manufactured)

Maximum storage condition after opening the package: JEDEC J-STD-020C MSL: Level 3

(7 days after opening)

Products should be all used within the storage term after opening the package.

After the storage limit, baking treatment is necessary to be able to use the products.

The storage conditions after baking are the same as those after opening the package.

[Baking conditions]

Temperature: 50±2°C

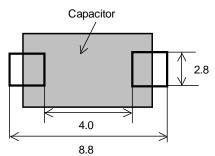
Time: 100h to 200h(Do not perform more than twice.)

9.2.2 Temperature

Use at or under the rated (guaranteed) temperature.

Operation at temperatures exceeding specifications causes large changes in the capacitors electrical properties, and deterioration than can potentially lead to failure.

When calculating the operating temperature of the capacitor, be sure to include not only the ambient temperature and internal temperature of the unit, but also radiation from heat generating elements inside the unit (power transistors, resistors, etc.), and self-heating due to ripple current.


9.2.3 Capacitor Mounting

(1) Land Size

Refer to the land size described next page for appropriate design dimensions. Circuit board design requires examination of the most suitable dimensions taking conditions such as circuit board, parts and re-flow into consideration.

These products are designed specifically for re-flow soldering. Consult with our factory before performing mounting processes other than re-flow soldering.

Typical land pattern (mm)

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	13

(2) Heat stress of re-flow, etc.

Specified re-flow conditions must be strictly observed.

Soldering under other conditions can cause short circuits and increases in ESR.

(3) Repair and modification by soldering iron.

When using a soldering iron, set the tip temperature to no more than 350°C, and work in as short a time as possible under 10s. While soldering, do not apply strong force to the capacitor.

(4) Mechanical stress

Do not apply excessive force to the capacitor, since this can damage the electrodes and badly affect the capacitor's mountability. It can also cause the increase of leakage current, separation of the lead wire and element, and damage to the capacitor body, all of which can badly affect the electrical performance of the capacitor.

9.2.4 Transportation

Take sufficient care during handling because excessive vibration, or shock can cause the reliability of the capacitor to decrease.

9.2.5 Circuit Board Cleaning

Products should be cleaned after soldering in accordance with the following conditions.

Temperature: Less than 60°C

Time: Within 5min(Ultrasound OK)

Be sure to sufficiently wash and dry (20min at 100°C) the board afterward.

[Recommended cleaning solvents]

Pine Alpha ST-100S, Clean-thru 750H, Clean-thru 750L, Clean-thru710M, Aqua Cleaner 210SEP Sunelec B-12, DK beclear CW-5790, Techno Cleaner 219, Cold Cleaner P3-375, Telpen Cleaner EC-7R Techno Care FRW-17, Techno Care FRW-1, Techno care FRV-1, AXREL32

Note1: Consult our factory when performing processes with cleaning solvents other than those listed above.

2: The use of ozone depleting cleaning agents are not recommended in the interest of protecting the environment.

9.3 Others

9.3.1 Precautions for using capacitors

Before using the products, carefully check the effects on their quality and performance, and determined whether or not they can be used. These products are designed and manufactured for general-purpose and standard use in general electronic equipment. These products are not intended for use in the following special conditions.

- (1) In liquid, such as Water, Oil, Chemicals, or Organic solvent
- (2) In direct sunlight, outdoors, or in dust
- (3) In vapor, such as dew condensation water of resistive element, or water leakage, salty air, or air with a high concentration corrosive gas, such as Cl2, H2S, NH3, SO2, or NO2
- (4) In an environment where strong static electricity or electromagnetic waves exist
- (5) Mounting or placing heat-generating components or inflammables, such as vinyl-coated wires, near these products
- (6) Sealing or coating of these products or a printed circuit board on which these products are mounted, with resin and other material
- (7) Using resolvent, water or water-soluble cleaner for flux cleaning agent after soldering.

(In particular, when using water or a water-soluble cleaning agent, be careful not to leave water residues)

- (8) Acid or alkaline environments.
- (9) Environment subject to excessive vibration and shock.

9.3.2 Emergency Procedures

If the capacitor is overheated, the resin case may emit smoke. If this occurs, immediately switch off the unit's main power supply to stop operation. Keep your face and hands away from the capacitor, since the temperature may be high enough to cause the capacitor to ignite and burn.

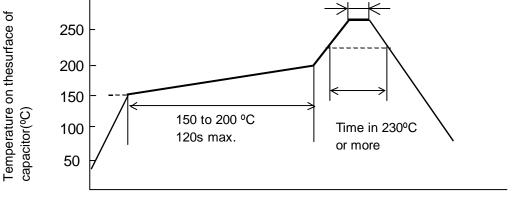
9.3.3 Capacitor Disposal

Since capacitors are composed of various metals and resins, treat them as industrial waste when arranging for their disposal.

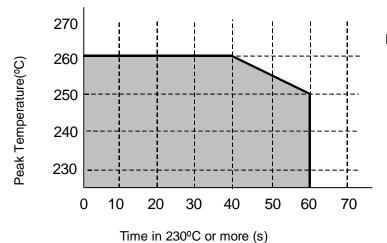
Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	14

10.Maximum permissible reflow soldering temperature profile

We recommend soldering shall be done according to following maximum permissible reflow soldering temperature profile.


Reflow soldering

Method: Hot air or infrared furnace.

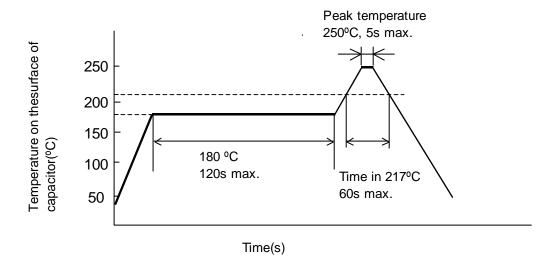

Temperature measurement point: Top of capacitor. Measuring method: Thermo-couple(K: ϕ 0.1mm)

Reflow profile:

Time(s)

Ex.

Peak Temp.	Time in 230°C or more
260°C,10s max.	40s max.
250°C,10s max.	60s max.


Reflow times: 2max.

Note: Please refer to item 9.2.1 of the Application Guidelines for the proper storing conditions prior to the second reflow.

(The second reflow soldering should be performed in 5 days after the first one.)

Product Specification	E-CXES-ML-5000
Specialty Polymer Aluminum Electrolytic Capacitors (CD/CX/UE/S)	15

Reflow profile : suffix code 「MR」

Reflow times: 2max.

Note: Please refer to item 9.2.1 of the Application Guidelines for the proper storing conditions prior to the second reflow.

(The second reflow soldering should be performed in 5 days after the first one.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Organic Polymer Capacitors category:

Click to view products by Panasonic manufacturer:

Other Similar products are found below:

```
750-1809 SEAU0A0102G MAL218497801E3 MAL218297003E3 MAL218497803E3 MAL218397603E3 MAL218297802E3

MAL218497701E3 MAL218397102E3 MAL218297804E3 MAL218497804E3 MAL218697005E3 MAL218697509E3 MAL218297603E3

MAL218397604E3 MAL218697106E3 MAL218297005E3 MAL218397106E3 MAL218297103E3 MAL218397104E3 MAL218297604E3

MAL218697601E3 MAL218697554E3 MAL218697607E3 MAL218397702E3 MAL218497901E3 MAL218497806E3 MAL218697001E3

PCZ1V181MCL1GS PCZ1E331MCL1GS 35PZF270MT810X9 HHXD500ARA470MHA0G APD1012271M035R APD1012331M035R

APA0609471M006R APA0609561M004R APA0609561M006R APD0811271M035R APA0807561M004R APA0809331M016R

APA0809561M010R APA0809821M004R APA0809821M006R APA0812471M016R APA0812561M016R APA1010122M006R

APA1010152M004R APA1012122M010R APA1012821M016R SPT1EM681F16OR
```