

Products Catalog

Fixed Resistors

- General purpose chip resistors type
- High precision type
- Current sensing type
- Small & High power type

- Anti-Sulfurated type
- High temperature type
- Resistor network / Array type

IN Your Future

Fixed Resistors (Surface Mount Resistors) INDEX

Classification	Product item	Part No.	Page
<u>Safety</u> (precautions (Common precautions for Fixed Resistors / Common pre	cautions for Surface Mount Resistors)	1
General purpose	Thick film chip resistors	ERJ XG, 1G, 2G, 3G, 6G, ERJ 8G*, 14*, 12*, 12Z*, 1T*	5
chip resistors	Precision thick film chip resistors	ERJ XG, 1G, 1R, 2R, 3R, 6R, 3E, 6E, 8E*, ERJ 14*, 12*, 1T*	8
NEW	Thin film chip resistors, High voltage type	ERA 8P	12
High precision	Thin film chip resistors, High stability and reliability type	ERA 2V, 3V, 3K, 6V, 6K, 8V, 8K	14
	Metal film (Thin film) Chip resistors, High reliability type	ERA 1A, 2A, 3A, 6A, 8A	17
	High precision thick film chip resistors	ERJ PB3, PB6	20
Current sensing	Thick film chip resistors / Low resistance type	ERJ 2LW, 3LW, 6LW, ERJ 2BW,3BW,6BW,8BW,6CW,8CW ERJ 2B, 3B, 6D, 6B, 8B, 14B, 3R, 6R, 8R, 14R, ERJ 12R, 12Z, ERJ 1TR, L03, L06, L08, L14, L12, L1D, L1W	22
	Current sensing resistors, Metal plate type	ERJ MS4S, MS4H, MB1S	28
	High power chip resistors / Wide terminal type	ERJ A1, B1, B2, B3	32
	Low TCR high power chip resistors / Wide terminal type	ERJ D1, D2	37
	Anti-Surge thick film chip resistors	ERJ PA2, P03, PA3, P06, P08, PM8, P14	40
Small & High power	Anti-Surge thick film chip resistors (Double-sided resistive elements structure)	ERJ P6W*	45
-	Anti-Pulse thick film chip resistors	ERJ T06, T08, T14	47
	Anti-Sulfurated thick film chip resistors	ERJ S02, S03, S06, S08, S14, S12, S1D, S1T, ERJ U0X, U01, U02, U03, U06, U08, U14, U12, ERJ U1D, ERJ U1T, ERJ U6S, U6Q	50
Anti-Sulfurated	Anti-Sulfurated thick film chip resistors / Precision type	ERJ U2R, U3R, U6R	54
	Anti-Sulfurated thick film chip resistors / Anti-Surge type	ERJ UP3, UP6, UP8	56
-	Anti-Sulfurated thick film chip resistors / Wide terminal type	ERJ C1	59
High temperature	High temperature thick film chip resistors (Automotive Grade)	ERJ H2G, H2C, H2R, H3G, H3E, H3Q, H6G, HP6	62
	Chip resistor array	EXB 14V, 18V, 24V, 28V, N8V, 2HV, 34V, V4V, 38V, V8V, S8V	65
Resistor	Anti-Sulfurated chip resistor array	EXB U14, U18, U24, U28, U2H, U34, U38	69
network/Array	Chip resistor networks	EXB D, E, A, Q	72
	Chip attenuator	EXB 14AT, 24AT	76
	Packaging methods (Ta	aping)	78
Common	Recommended land pa	ittern	83
Common specifications	Recommended soldering c	onditions	86
-	Standard for resistance value and re	sistance tolerance	87

*Not Recommended for New Design

Guidelines and precautions regarding the technical information and use of our products described in this online catalog.

- If you want to use our products described in this online catalog for applications requiring special qualities or reliability, or for applications where the failure or malfunction of the products may directly jeopardize human life or potentially cause personal injury (e.g. aircraft and aerospace equipment, traffic and transportation equipment, combustion equipment, medical equipment, accident prevention, anti-crime equipment, and/or safety equipment), it is necessary to verify whether the specifications of our products fit to such applications. Please ensure that you will ask and check with our inquiry desk as to whether the specifications of our products fit to such applications of our products.
- The quality and performance of our products as described in this online catalog only apply to our products when used in isolation. Therefore, please ensure you evaluate and verify our products under the specific circumstances in which our products are assembled in your own products and in which our products will actually be used.
- If you use our products in equipment that requires a high degree of reliability, regardless of the application, it is recommended that you set up protection circuits and redundancy circuits in order to ensure safety of your equipment.
- The products and product specifications described in this online catalog are subject to change for improvement without prior notice. Therefore, please be sure to request and confirm the latest product specifications which explain the specifications of our products in detail, before you finalize the design of your applications, purchase, or use our products.
- The technical information in this online catalog provides examples of our products' typical operations and application circuits. We do not guarantee the non-infringement of third party's intellectual property rights and we do not grant any license, right, or interest in our intellectual property.
- If any of our products, product specifications and/or technical information in this online catalog is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially with regard to security and export control, shall be observed.

<Regarding the Certificate of Compliance with the EU RoHS Directive/REACH Regulations>

- The switchover date for compliance with the RoHS Directive/REACH Regulations varies depending on the part number or series of our products.
- When you use the inventory of our products for which it is unclear whether those products are compliant with the RoHS Directive/REACH Regulation, please select "Sales Inquiry" in the website inquiry form and contact us.

We do not take any responsibility for the use of our products outside the scope of the specifications, descriptions, guidelines and precautions described in this online catalog.

Application Guidelines (Fixed Resistors)

Safety precautions

- When using our products, no matter what sort of equipment they might be used for, be sure to make a written agreement on the specifications with us in advance. The design and specifications in this catalog are subject to change without prior notice.
- Do not use the products beyond the specifications described in this catalog.
- This catalog explains the quality and performance of the products as individual components. Before use, check and evaluate their operations when installed in your products under the actual conditions for use.
- Install the following systems for a failsafe design to ensure safety if these products are to be used in equipment where a defect in these products may cause the loss of human life or other significant damage, such as damage to vehicles (automobile, train, vessel), traffic lights, medical equipment, aerospace equipment, electric heating appliances, combustion/gas equipment, rotating equipment, and disaster/crime prevention equipment.
 - * Systems equipped with a protection circuit and a protection device.
 - * Systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault.
 - * Systems equipped with an arresting the spread of fire or preventing glitch.

Precautions for use

- These products are designed and manufactured for general and standard use in general elec tron ic equipment. (e.g. AV equipment, home electric appliances, office equipment, information and communication equipment) For applications in which special quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or cause threat of personal injury (such as for aircraft and aerospace equipment, traffic and transport equipment, combustion equipment, medical equipment, accident prevention and anti-theft devices, and safety equipment), please be sure to consult with our sales representative in advance and to exchange product specifications which conform to such applications.
- These products are not intended for use in the following special conditions. Before using the products, carefully check the effects on their quality and performance, and determine whether or not they can be used.
 - 1. In liquid, such as water, oil, chemicals, or organic solvent.
 - 2. In direct sunlight, outdoors, or in dust.
 - 3. In salty air or air with a high concentration of corrosive gas, such as Cl2, H2S, NH3, SO2, or NOX .
 - 4. Electric Static Discharge (ESD) Environment. These components are sensitive to static electricity and can be damaged under static shock (ESD). Please take measures to avoid any of these environments. Smaller components are more sensitive to ESD environment.
 - 5. Electromagnetic and Radioactive Environment.
 - Avoid any environment where strong electromagnetic waves and radiation exist.
 - 6. In an environment where these products cause dew condensation.
 - 7. Sealing or coating of these products or a printed circuit board on which these products are mounted, with resin or other materials.
- These products generate Joule heat when energized. Carefully position these products so that their heat will not affect the other components.
- Carefully position these products so that their temperatures will not exceed the category temperature range due to the effects of neighboring heat-generating components. Do not mount or place heat-generating components or inflammables, such as vinyl-coated wires, near these products.
- Note that non-cleaning solder, halogen-based highly active flux, or water-soluble flux may deteriorate the performance or reliability of the products.
- Carefully select a flux cleaning agent for use after soldering. An unsuitable agent may deteriorate the performance or reliability. In particular, when using water or a water-soluble cleaning agent, be careful not to leave water residues. Otherwise, the insulation performance may be deteriorated.
- Do not apply flux to these products after soldering. The activity of flux may be a cause of failures in these products.
- Refer to the recommended soldering conditions and set the soldering condition. High peak temperature or long heating time may impair the performance or the reliability of these products.
- Recommended soldering condition is for the guideline for ensuring the basic characteristics of the products, not for the stable soldering conditions. Conditions for proper soldering should be set up according to individual conditions.
- Do not reuse any products after removal from mounting boards.
- Do not drop these products. If these products are dropped, do not use them. Such products may have received mechanical or electrical damage.
- If any doubt or concern to the safety on these products arise, make sure to inform us immediately and conduct technical examinations at your side.

Precautions for storage

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $5 \degree$ C to $35 \degree$ C and a relative humidity of 45 % to 85 %.

Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures. 1. In salty air or in air with a high concentration of corrosive gas, such as Cl2, H2S, NH3, SO2, or NOX . 2. In direct sunlight.

<Package markings>

Package markings include the product number, quantity, and country of origin. In principle, the country of origin should be indicated in English.

AEC-Q200 Compliant

The products are tested based on all or part of the test conditions and methods defined in AEC-Q200. Please consult with Panasonic for the details of the product specification and specific evaluation test results, etc., and please review and approve Panasonic's product specification before ordering.

Application Guidelines (Surface Mount Resistors)

The following are precautions for individual products. Please also refer to the common precautions for Fixed Resistors in this catalog.

- Take measures against mechanical stress during and after mounting of Surface Mount Resistors (hereafter called the resistors) so as not to damage their electrodes and protective coatings. Be careful not to misplace the resistors on the land patterns. Otherwise, solder bridging may occur.
- 2. Keep the rated power and ambient temperature within the specified derating curve. Some circuit boards, wiring patterns, temperatures of heat generated by adjacent components, or ambient temper a tures can become factors in the rise of the temperature of the resistors, regardless of the level of power applied. Therefore, check the conditions before use and op timize them so as not to damage the boards and peripheral components.

Make sure to contact us before using the resistors under special conditions.

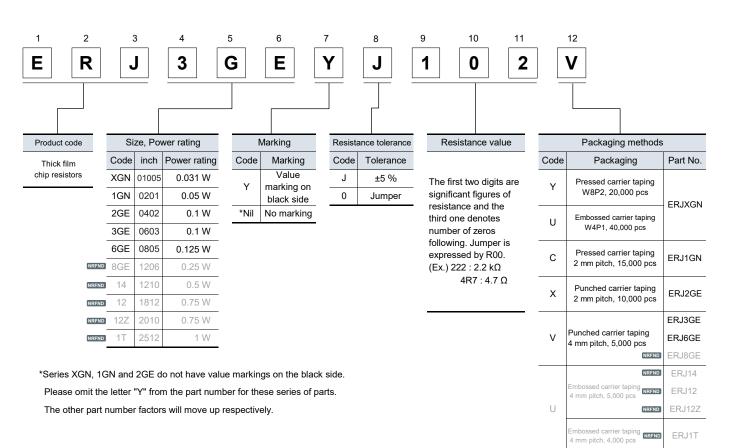
- 3. If a transient load (heavy load in a short time) like a pulse is expected to be applied, check and evaluate the operations of the resistors when installed in your products before use. Never exceed the rated power. Otherwise, the performance and/or reliability of the resistors may be impaired.
- 4. Transient voltage

If there is a possibility that the transient phenomenon (significantly high voltage applied in a short time) may occur or that a high voltage pulse may be applied, make sure to evaluate and check the characteristics of resistors mounted on your product rather than only depending on the calculated power limit or steady-state conditions.

- 5. If the resistors are to be used in high frequency circuits, carefully check the operation before use. Such circuits change the electrical characteristics of the resistors.
- 6.Before using halogen-based or other high-activity flux, check the possible effects of the flux residues on the performance and reliability of the resistors.
- 7. When soldering with a soldering iron, never touch the resistors'bodies with the tip of the soldering iron. When using a soldering iron with a high temperature tip, finish soldering as quickly as possible (within three seconds at 350 °C max.).
- Mounting of the resistors with excessive or insufficient wetting amount of solder may affect the connection reliability or the performance of the resistors. Carefully check the effects and apply a proper amount of solder for use.
- 9. When the resistors' protective coatings are chipped, flawed, or removed, the characteristics of the resistors may be impaired. Take special care not to apply mechanical shock during automatic mounting or cause damage during handling of the boards with the resistors mounted.
- 10. Do not apply shock to the resistors or pinch them with a hard tool (e.g. pliers and tweezers). Otherwise, the resistors' protective coatings and bodies may be chipped, affecting their performance.
- 11. Avoid excessive bending of printed circuit boards in order to protect the resistors from abnormal stress.
- 12. Do not immerse the resistors in solvent for a long time. Before using solvent, carefully check the effects of immersion.
- 13. Do not apply excessive tension to the terminals.

Panasonic

INDUSTRY


Thick Film Chip Resistors ERJ type ERJ XG, 1G, 2G, 3G, 6G series ERJ 8G, 14, 12, 12Z, 1T series

Features

- Small size and lightweight
- High reliability : Metal glaze thick film resistive element and three layers of electrodes
- Compatible with placement machines : Taping packaging available
- Suitable for both reflow and flow soldering
- Reference standard : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C
- AEC-Q200 compliant (except ERJXG)
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

• ERJXGN, 1GN, 2GE, 3GE, 6GE, 8GE, 14, 12, 12Z, 1T series, ±5 %

Not recommended for new design

Thick Film Chip Resistors

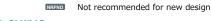
Ratings

[For Resistor]

Part N (inch si	(70 °C)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Resistance tolerance (%)	Resista rang (Ω	je	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC- Q200 Grade
ERJX (0100	0.031	15	30	±5	1 to 1 M	(E24)	R<10Ω : −100 to +600 10Ω to 100Ω : ±300 100Ω≤R : ±200	-55 to +125	-
ERJ1 (0201	0.05	25	50	±5	1 to 10 M	(E24)			Grade 1
ERJ20 (0402	<u> </u>	50	100	±5	1 to 10 M	(E24)	R<10 Ω : -100 to +600		
ERJ3 (0603	G 0.1	75	150	±5	1 to 10 M	(E24)	10 Ω to 1 M Ω : ±200 1 MΩ <r +150<="" -400="" :="" td="" to=""><td>-55 to +155</td><td>Grade 0</td></r>	-55 to +155	Grade 0
ERJ6 (0805	11 1 25	150	200	±5	1 to 10 M	(E24)			
ERJ8 (1206	0.25	200	400	±5	1 to 10 M	(E24)			
ERJ1 (1210	() 5	200	400	±5	1 to 10 M	(E24)	R<10 Ω : -100 to +600		
ERJ1 (1812	- 0 /5	200	500	±5	1 to 10 M	(E24)	10 Ω to 1 M Ω : ±200	-55 to +155	Grade 0
ERJ12	() /5	200	500	±5	1 to 10 M	(E24)	1 MΩ <r +150<="" -400="" :="" td="" to=""><td></td><td></td></r>		
ERJ1 (2512		200	500	±5	1 to 1 M	(E24)			

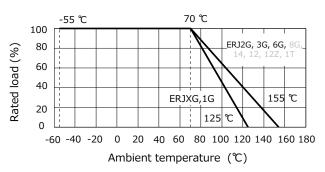
*1: Use it on the condition that the case temperature is below the upper category temperature.

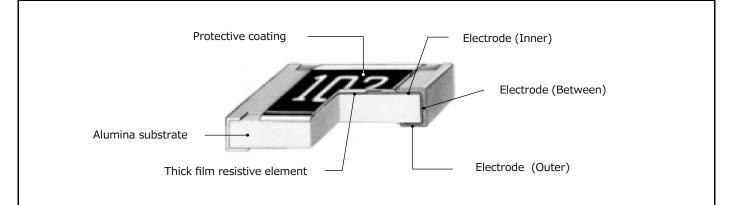
*2: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=/Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.


*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

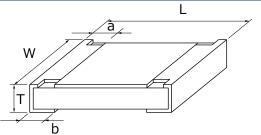
[For Jumper]

	Part No.	Resistance(Ω)	Rated current(A)	Maximum overload current (A) ^{*1}
	ERJXG		0.5	1
	ERJ1G	50 m Ω or less	0.5	1
	ERJ2G		50 mΩ or less	
	ERJ3G		1	2
	ERJ6G		2	4
NR	ERJ8G			
NR	ERJ14			
NRF	™ ERJ12	50 m Ω or less	2	4
NRI	∎ ERJ12Z			
NR	ERJ1T			


* 1 :Overload test current


Construction

Power derating curve


above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.

Thick Film Chip Resistors

Dimensions (not to scale)

						Unit : mm			
Part No.	Dimensions								
Part NO.	L	W	а	b	Т	 (Reference) (g/1000 pcs) 			
ERJXG	0.40±0.02	0.20±0.02	0.10 ± 0.03	0.10 ± 0.03	0.13±0.02	0.04			
ERJ1G	0.60±0.03	0.30±0.03	0.10 ± 0.05	0.15 ± 0.05	0.23±0.03	0.15			
ERJ2G	1.00 ± 0.05	0.50±0.05	0.20±0.10	0.25±0.05	0.35±0.05	0.8			
ERJ3G	1.60 ± 0.15	0.80+0.15/-0.05	0.30±0.20	0.30±0.15	0.45±0.10	2			
ERJ6G	2.00±0.20	1.25±0.10	0.40±0.20	0.40±0.20	0.60±0.10	4			
NRFND ERJ8G	3.20+0.05/-0.20	1.60+0.05/-0.15	0.50±0.20	0.50±0.20	0.60±0.10	10			
NRFND ERJ14	3.20±0.20	2.50±0.20	0.50±0.20	0.50±0.20	0.60±0.10	16			
NRFND ERJ12	4.50±0.20	3.20±0.20	0.50±0.20	0.50±0.20	0.60±0.10	27			
NRFND ERJ12Z	5.00±0.20	2.50±0.20	0.60±0.20	0.60±0.20	0.60±0.10	27			
NRFND ERJ1T	6.40±0.20	3.20±0.20	0.65±0.20	0.60±0.20	0.60±0.10	45			

NREND Not recommended for new design

Performance

Test item	Performance re	equirements ⊿R	Test conditions
Test item	Resistor type	Jumper type	
Resistance	Within specified tolerance	50 m Ω or less	20 °C
T. C. R.	Within specified T. C. R.	50 m Ω or less	+25℃ / +155℃ (ERJXG,1G:+25℃ / +125℃)
Overload	±2 %	50 m Ω or less	Rated voltage× 2.5, 5 s Jumper type : Max. overload current, 5 s
Resistance to soldering heat	±1 %	50 m Ω or less	270 ℃, 10 s
Rapid change of temperature	±1 %	50 m Ω or less	−55 ℃ (30 min.) / +155 ℃ (ERJXG,1G : +125 ℃) (30 min.), 100 cycles
High temperature exposure	±1 %	50 m Ω or less	+155℃ (ERJXG,1G:+125℃), 1000 h
Damp heat, Steady state	±1 %	50 m Ω or less	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±3 %	50 m Ω or less	60 ℃, 90 % to 95 %RH, Rated voltage (Jumper type :Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70°C	±3 %	50 m Ω or less	70℃, Rated voltage (Jumper type : Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h

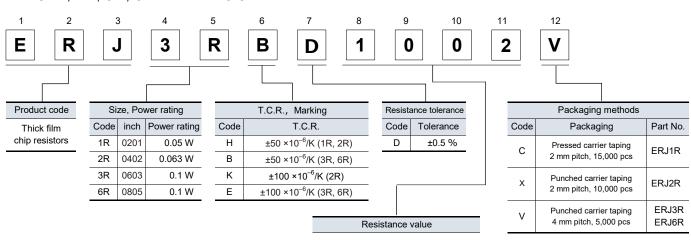
Panasonic

INDUSTRY

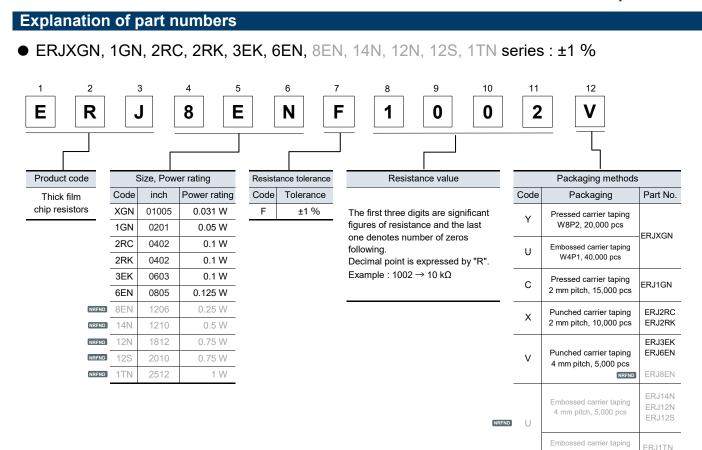
Precision Thick Film Chip Resistors

ERJ type

- ERJ XG, 1G series
- ERJ 1R, 2R, 3R, 6R series
- ERJ 3E, 6E, 8E, 14, 12, 1T series


(Oct. 2021) Products marked as "NRFND" are not recommended for new design. Target products : ERJ8E, 14, 12, 1Tseries Please refer to the recommended alternatives with "Design Support Tool" ·

Features


- Small size and lightweight
- High reliability : Metal glaze thick film resistive element and three layers of electrodes
- Compatible with placement machines : Taping packaging available
- Suitable for both reflow and flow soldering
- Low resistance tolerance : ERJXG, 1G, 2R, 3E, 6E, 8E, 14, 12, 1⊤ series : ±1 % ERJ1R, 2R, 3R, 6R series : ±0.5 %
- Reference standard : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C
- AEC-Q200 compliant (except ERJXG, ERJ1R)
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

ERJ1R, 2R, 3R, 6R series : ±0.5 %

The first three digits are significant figures of resistance and the last one denotes number of zeros following. Example : $1002 \rightarrow 10 \text{ K}\Omega$

Precision Thick Film Chip Resistors

NRFND Not recommended for new design

4 mm pitch, 4,000 pcs

Ratings

<±0.5 %>

Part No. (inch size)	Rated power ^{*1} (70 ℃) (W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Resistance tolerance (%)	Resist ran (Ω	ge	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (°C)	AEC-Q200 Grade
ERJ1RH (0201)	0.05	15	30	±0.5	1 k to 1 M	(E24,E96)	±50	-55 to +125	-
ERJ2RH (0402)	0.063	50	100	±0.5	100 to 100 k	(E24,E96)	±50		
ERJ2RK (0402)	0.063	50	100	±0.5	10 to 97.6 102 k to 1 M	(E24,E96)	±100	55 to +155	Grade 0
ERJ3RB (0603)	0.1	75 ^{*4}	150 ^{*4}	±0.5	100 to 100 k	(E24,E96)	±50		
ERJ3RE (0603)	0.1	75 ^{*4}	150 ^{*4}	±0.5	10 to 97.6 102 k to 1 M	(E24,E96)	±100		
ERJ6RB (0805)	0.1	150	200	±0.5	100 to 100 k	(E24,E96)	±50		
ERJ6RE (0805)	0.1	150	200	±0.5	10 to 97.6 102 k to 1 M	(E24,E96)	±100		

*1 : Use it on the condition that the case temperature is below the upper category temperature.

*2 : Rated continuous working voltage (RCWV) shall be determined from RCWV=√Power rating × Resistance value, or limiting element voltage listed above, whichever less.

*3 : Overload test voltage (OTV) shall be determined from OTV = specified magnification (refer to performance) × RCWV or maximum overload voltage listed above, whichever less.

*4 : UPGRADE

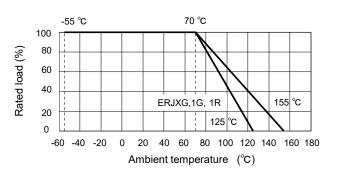
Precision Thick Film Chip Resistors

Ratings

Part No. (inch size)	Power rating ^{*1} (70 ℃) (W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Resistance tolerance (%)	Resist ran (Ω	ge	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
ERJXGN (01005)	0.031	15	30	±1	10 to 1 M ^{*4}	(E24,E96)	R < 100 Ω : ±300 100 Ω ≤ R : ±200	-55 to +125	-
ERJ1GN (0201)	0.05	25	50	±1	10 to 1 M ^{*4}	(E24,E96)	±200	-55 to +125	Grade 1
ERJ2RC (0402)	0.1	50	100	±1	1 to 9.76	(E24,E96)	-100 to +600	-55 to +155	Grade 0
ERJ2RK (0402)	0.1	50	100	±1	10 to 1 M	(E24,E96)	±100	-55 to +155	Grade 0
ERJ3EK (0603)	0.1	75	150	±1	10 to 1 M	(E24,E96)	±100	-55 to +155	Grade 0
ERJ6EN (0805)	0.125	150	200	±1	10 to 2.2 M	(E24,E96)	±100	-55 to +155	Grade 0
ERJ8EN (1206)	0.25	200	400	±1	10 to 2.2 M	(E24,E96)	±100	-55 to +155	Grade 0
ERJ14N (1210)	0.5	200	400	±1	10 to 1 M	(E24,E96)	±100	-55 to +155	Grade 0
ERJ12N (1812)	0.75	200	500	±1	10 to 1 M	(E24,E96)	±100	-55 to +155	Grade 0
ERJ12S (2010)	0.75	200	500	±1	10 to 1 M	(E24,E96)	±100	-55 to +155	Grade 0
ERJ1TN NRFND (2512)	1	200	500	±1	10 to 1 M	(E24,E96)	±100	-55 to +155	Grade 0

*1 : Use it on the condition that the case temperature is below the upper category temperature.

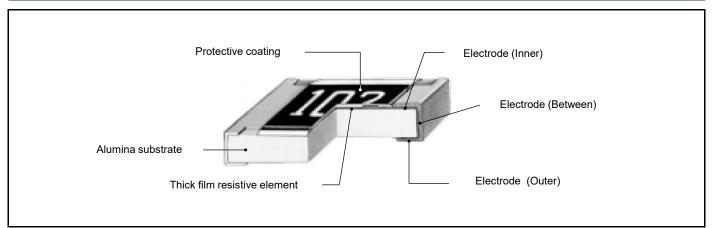
*2 : Rated continuous working voltage (RCWV) shall be determined from RCWV=√Power rating × Resistance value,


or limiting element voltage listed above, whichever less.

*3 : Overload test voltage (OTV) shall be determined from OTV = specified magnification (refer to performance) × RCWV or maximum overload voltage listed above, whichever less.

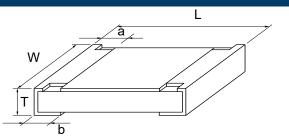
*4 : Please contact us when you need a type with a resistance of less than 10 $\Omega.$

Power derating curve


For resistors operated in ambient temperatures above 70 ℃, power rating shall be derated in accordance with the figure on the right.

NRFND

Not recommended for new design


Construction

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to change without nearest, should a safety concern arise regarding this product, please be sure to contact us immediately. 10

Precision Thick Film Chip Resistors

Dimensions (not to scale)

Dort No.	Dimensions (mm)								
Part No.	L	W	а	b	Т	(Reference) (g/1000 pcs)			
ERJXGN	0.40±0.02	0.20±0.02	0.10±0.03	0.10±0.03	0.13±0.02	0.04			
ERJ1GN	0.60±0.03	0.30±0.03	0.10±0.05	0.15±0.05	0.23±0.03	0.15			
ERJ1R□	0.00±0.05	0.30±0.03	0.10±0.05	0.15±0.05	0.2510.05	0.15			
ERJ2R□	1.00±0.05	0.50±0.05	0.20±0.10	0.25±0.05	0.35±0.05	0.8			
ERJ3R□	1.60±0.15	0.80+0.15/-0.05	0.30±0.20	0.30±0.15	0.45±0.10	2			
ERJ3EK	1.00±0.10	0.0010.10/-0.00	0.00±0.20	0.00±0.10	0.40±0.10	2			
ERJ6R□	2.00±0.20	1.25±0.10	0.40±0.20	0.40±0.20	0.60±0.10	4			
ERJ6EN	2.0020.20	1.2020.10	0.1020.20	0.1020.20	0.0020.10	•			
NREND ERJ8EN	3.20+0.05/-0.20	1.60+0.05/-0.15	0.50±0.20	0.50±0.20	0.60±0.10	10			
NRFND ERJ14N	3.20±0.20	2.50±0.20	0.50±0.20	0.50±0.20	0.60±0.10	16			
NRFND ERJ12N	4.50±0.20	3.20±0.20	0.50±0.20	0.50±0.20	0.60±0.10	27			
NREND ERJ12S	5.00±0.20	2.50±0.20	0.60±0.20	0.60±0.20	0.60±0.10	27			
NRFND ERJ1TN	6.40±0.20	3.20±0.20	0.65±0.20	0.60±0.20	0.60±0.10	45			

Not recommended for new design

Performance

• ERJ1R, 2R, 3R, 6R series : ±0.5 % (D)

Test item	Performance	Test conditions
	requirements ⊿R	
Resistance	Within specified	20 °C
Resistance	tolerance	20 C
T. C. R.	Within specified	+25 ℃ / +125 ℃
T. C. K.	T. C. R.	+25 C7 +125 C
Overload	±2 %	Rated voltage × 2.5, 5 s
Resistance to soldering heat	±1 %	270 ℃, 10 s
Rapid change of temperature	±1 %	–55 ℃ (30 min.) / +155 ℃ (ERJ1R : +125 ℃)(30 min.),
Rapid change of temperature	1 /0	100 cycles
High temperature exposure	±1 %	+155 ℃ (ERJ1R : +125 ℃), 1000 h
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Lood life in humidity	±2 %	60 ℃, 90 % to 95 %RH, Rated voltage,
Load life in humidity	ERJ1R : ±3 %	1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70 ℃	±2 %	70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Elidurance at 70 C	ERJ1R : ±3 %	TO C, Maled Vollage, 1.5 II ON 7 0.5 II OFF Cycle, 1000 II

• ERJXGN, 1GN, 2RC, 2RK, 3EK, 6EN, 8EN, 14N, 12N, 12S, 1TN series : ±1 %(F)

Test item	Performance requirements ⊿R	Test conditions	
Resistance	Within specified tolerance	20 ℃	
T. C. R.	Within specified T. C. R.	+25 ℃ / +155 ℃ (ERJXG,ERJ1G : +25℃ / +125 ℃)	
Overload	±2 %	Rated voltage × 2.5, 5 s	
Resistance to soldering heat	±1 %	270 °C, 10 s	
Rapid change of temperature	±1 %	–55 ℃ (30 min.)/+155 ℃ (ERJXG,ERJ1G : +125 ℃)(30 min.), 100 cycles	
High temperature exposure	±1 %	+155 ℃ (ERJXG,ERJ1G : +125 ℃), 1000 h	
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h	
Load life in humidity	±2 % ERJXG,1G : ±3 %	60 ℃, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h	
Endurance at 70 ℃	±2 % ERJXG,1G : ±3 %	70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h	

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

anasonic

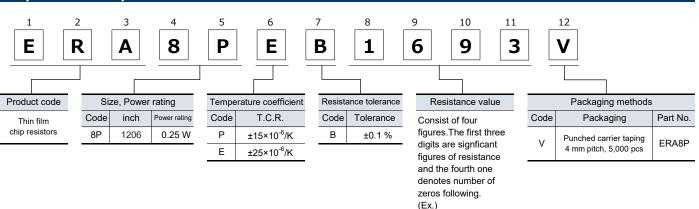
INDUSTRY

Thin Film Chip Resistors, **High Voltage Type**

ERA 8P series

Features

- High voltage
- High reliability
- High accuracy
- High performance
- Anti-ESD
- : Original structure for high ESD performance (AEC-Q200-002 HBM Guarantee at 4 kV) : Original structure for sulfurated performance


: Stable at high temperature and humidity

: Low current noise, excellent linearity

NFW

- Anti-sulfurated Reference standard
- : IEC 60115-8, JIS C 5201-8, JEITA RC-2133C
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

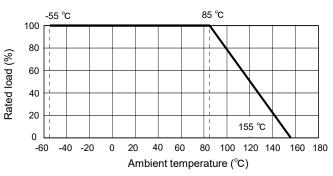
: Achieves high limiting element voltage with original design concept (500V $@1M\Omega$)

(85 \degree 85 %RH rated load, Category temperature range : -55 \degree to +155 \degree)

: Low resistance tolerance and temperature coefficient of resistance

1693	:	169	kΩ	
------	---	-----	----	--

Rating	Ratings									
Part No. (inch size)	Power rating at 85 ℃ ^{*1} (W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage (V)	Part No. (detail)	Resistance tolerance (%)	T.C.R. (×10 ⁻⁶ /K)	Resistanc (Ω	•	Category temperature range (°C)	AEC-Q200 Grade
ERA8P	0.25	500	1000	ERA8PEB	±0.1	±25	160 k to 1 M	(E24, E96)	-55 to +155	Grade 0
(1206)	0.25	500	1000	ERA8PPB	±0.1	±15		(224, 290)	-55 10 + 155	

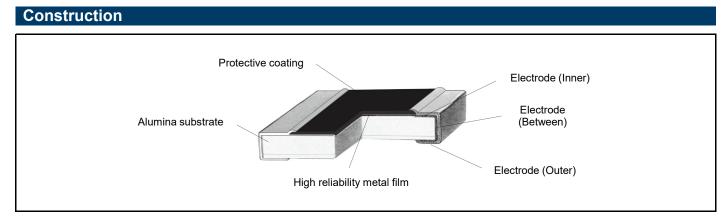

*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: Rated continuous working voltage (RCWV) shall be determined from RCWV=√ (Power Rating × Resistance Values), or limiting element voltage listed above, whichever less.

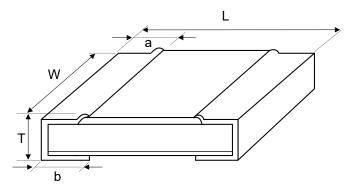
*3: E192 series resistance values are also available. The E192 series has custom part numbers. Please contact us for details.

Power derating curve

For resistors operated in ambient temperatures above 85°C, power rating shall be derated in accordance with the figure on the right.



Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use


Should a safety concern arise regarding this product, please be sure to contact us immediately

Thin Film Chip Resistors, High Voltage Type

Dimensions (not to scale)

		_				Unit : mm		
Part No.	Dimensions							
	L	W	а	b	Т	(Reference) (g/1000 pcs)		
ERA8P	3.20±0.20	1.60±0.10	0.50±0.20	0.50±0.20	0.55±0.10	10		

Performance

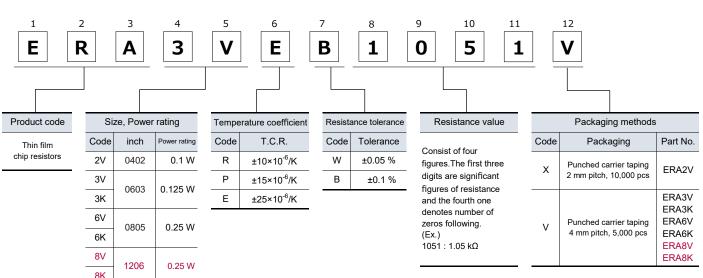
Test Item	Performance requirements ⊿R	Test conditions
Resistance Within specified tolerance		20 °C
T. C. R. Within specified T. C. R.		+25 °C / +125 °C
Overload ±0.1 %		Specified magnification (2.5) × RCWV or Maximum overload voltage, whichever less, 5 s
Resistance to soldering heat	±0.1 %	270 °C, 10 s
Rapid change of temperature	±0.1 %	–55 ℃ (30 min.) / +155 ℃ (30 min.), 1000 cycles
High temperature exposure	±0.1 %	+155 ℃, 1000 h
Damp heat, Steady state	±0.1 %	85 ℃, 85 %RH, 1000 h
Load life in humidity	±0.1 %	85 ℃, 85 %RH, 10 % of Rated power ^{*1} , 1.5 h ON / 0.5 h OFF cycle , 1000 h
Endurance at 85℃	±0.1 %	85 $^\circ\!\!\!\mathrm{C}$, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Electro static discharge (HBM)	±0.1 %	AEC-Q200-002 $(150 \text{ pF}, 2000 \Omega, \text{ positive 5 times}, \text{ negative 5 times})$
		ERA8P : 4.0 kV (Class 3)

*1: Applied Voltage is " $\sqrt{0.1 \times \text{Power Rating} \times \text{Resistance Values}}$ ".

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to charge without notice, the set of the set

anasonic

INDUSTRY


Thin Film Chip Resistors, **High Stability and Reliability Type** ERA V type (High resistance value ERA K type) ERA 2V, 3V, 6V, 8V series

(ERA 3K, 6K, 8K series)

Features

- : To realize higher power rating, Limiting element voltage, and maximum High Power overload voltage than current products : Stable at high temperature and humidity High reliability (85 °C 85 %RH rated load, Category temperature range : -55 °C to +155 °C) High accuracy : Low resistance tolerance and temperature coefficient of resistance High performance : Low current noise, excellent linearity Anti-ESD : Original structure for high ESD performance (AEC-Q200-002 HBM Class 1c and above)
- Anti-sulfurated
- : Original structure for sulfurated performance : IEC 60115-8, JIS C 5201-8, JEITA RC-2133C Reference standard
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

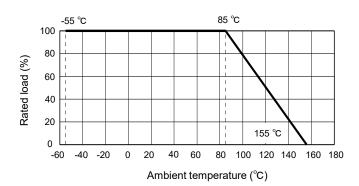
Explanation of part numbers

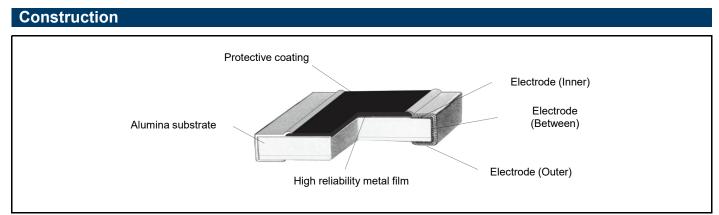
Thin Film Chip Resistors, High Stability and Reliability Type

Rating	S								
Part No. (inch size)	Power rating at 85 ℃ ^{*1} (W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Part No. (detail)	Resistance tolerance (%)	T.C.R. (×10 ⁻⁶ /K)	Resistance range ^{*4} (Ω)	Category temperature range (°C)	AEC-Q200 Grade
				ERA2VEB	±0.1	±25	47 to 100 k ^{*5} (E24, E96)		
ERA2V	0.1 75	75	150	ERA2VPB	±0.1	±15			
(0402)	0.1	15	150	ERA2VRB	±0.1	±10	1 k to 47 k ^{*5} (E24, E96)		
				ERA2VRW	±0.05	10			
				ERA3VEB	±0.1	±25	47 to 100 k (E24, E96)		
ERA3V	0.125	100	200	ERA3VPB	±0.1	±15			
(0603)	0603) 0.125 100	100	200	ERA3VRB	±0.1	±10	1 k to 100 k (E24, E96)		
				ERA3VRW	±0.05	10			
ERA3K (0603)	0.125	100	200	ERA3KEB	±0.1	±25	102 k to 240 k (E24, E96)		
			150 300	ERA6VEB	±0.1	±25	47 to 100 k (E24, E96)		
ERA6V	0.25	150		ERA6VPB	±0.1	±15		–55 to +155	Grade 0
(0805)	0.25	150		ERA6VRB	±0.1	±10	1 k to 100 k (E24, E96)		
				ERA6VRW	±0.05	ΞIU			
ERA6K (0805)	0.25	150	300	ERA6KEB	±0.1	±25	102 k to 750 k (E24, E96)		
NEW				ERA8VEB		±25	47 to 100 k (E24, E96)		
ERA8V	0.25	200	400	ERA8VPB	±0.1	±15	1 k to 100 k (E24, E96)		
(1206)	(1206) 0.25	200	400	ERA8VRB		±10	1 k to 100 k (E24, E96)		
				ERA8VRW	±0.05	110	1 K (0 100 K (L24, L90)	_	
NEW	NEW ERA8K 0.25	.25 200	00 400	ERA8KEB	±0.1	±25	102 k to 1 M (E24, E96)		
ERA8K				ERA8KPB		±15	102 K to 1 H (L2 I, L90)		
(1206)	0.25	200		ERA8KRB		±10	102 k to 160 k (E24, E96)		
				ERA8KRW	±0.05		102 K (0 100 K (227, 290)		

*1: Use it on the condition that the case temperature is below the upper category temperature.

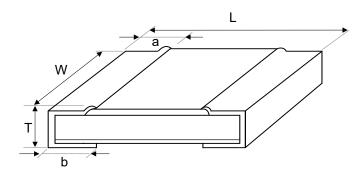
*2: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Values, or Limiting Element Voltage listed above, whichever less.


*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (2.5) × RCWV or Maximum Overload Voltage listed above, whichever less.


*4: E192 series resistance values are also available. The E192 series has custom part numbers. Please contact us for details.

*5: Expanded resistance range

Power derating curve


For resistors operated in ambient temperatures above 85°C, power rating shall be derated in accordance with the figure on the right.

Thin Film Chip Resistors, High Stability and Reliability Type

Dimensions (not to scale)

						Unit : mm			
Part No.	Dimensions								
	L	W	а	b	Т	(Reference) (g/1000 pcs)			
ERA2V	1.00±0.05	0.50+0.10/-0.05	0.25±0.10	0.25±0.10	0.35±0.05	0.6			
ERA3V,3K	1.60±0.15	0.80±0.10	0.30±0.20	0.30±0.20	0.45±0.10	2			
ERA6V,6K	2.00±0.20	1.25±0.10	0.40±0.20	0.40±0.20	0.55±0.10	5			
ERA8V,8K	3.20±0.20	1.60±0.10	0.50±0.20	0.50±0.20	0.55±0.10	10			

Performance

Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C
Overload	±0.1 %	Rated voltage× 2.5, 5 s
Resistance to soldering heat	±0.1 %	270 °C, 10 s
Rapid change of temperature	±0.1 %	–55 ℃ (30 min.) / +155 ℃ (30 min.),1000 cycles
High temperature exposure	±0.1 %	+155 ℃, 1000 h
Damp heat, Steady state	±0.1 %	85 °C, 85 %RH, 1000 h
Load life in humidity	±0.1 %	85 ℃, 85 %RH, 10 % of Rated power ^{*1} , 1.5 h ON / 0.5 h OFF cycle , 1000 h
Endurance at 85℃	±0.1 %	85 °C, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
		AEC-Q200-002 [:] 150 pF, 2000 Ω, positive 5 times, negative 5 times
Electro static	10 4 0/ ^{*2}	ERA2V : 1.0 kV (Class 1c)
discharge (HBM)	±0.1 % ^{*2}	ERA3V(3K):1.5 kV (Class 1c)
		ERA6V(6K) : 2.0 kV (Class 2)
		ERA8V(8K) : 2.0 kV (Class 2)

*1: Applied Voltage is " $\sqrt{0.1 \times \text{Power Rating} \times \text{Resistance Values}}$ ", or "Limiting Element Voltage×0.316", whichever less.

*2: Depends on resistance value.

2-Nov-21

Panasonic

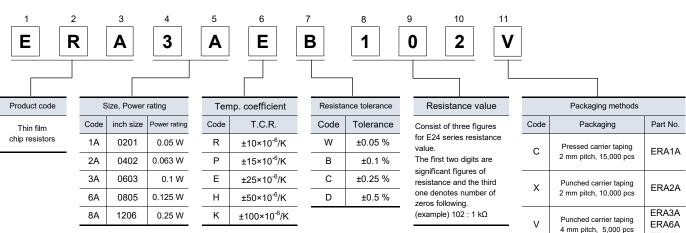
INDUSTRY

Metal Film (Thin Film) Chip Resistors, High Reliability Type

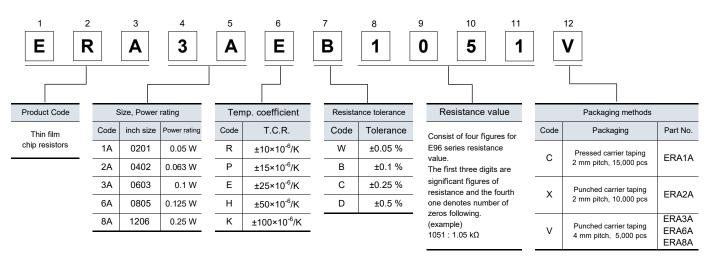
ERA A type

ERA 1A, 2A, 3A, 6A, 8A series

Features


- High reliability
- : Stable at high temperature and humidity
- (85 $^{\circ}$ C 85 $^{\circ}$ RH rated load, Category temperature range : –55 $^{\circ}$ C to +155 $^{\circ}$ C)
- High accuracy : Low resistance tolerance and Temperature Coefficient of Resistance
 - : Low current noise, excellent linearity
- Reference standard : IEC 60115-8, JIS C 5201-8, JEITA RC-2133C
- AEC-Q200 compliant (except ERA1A)
- RoHS compliant

High performance


As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

• E24 series

• E96 series and other Resistance values

Note : Duplicated resistance values as E24 series part umbers shall follow E24 part numbers.

(apply three digit resistance value)

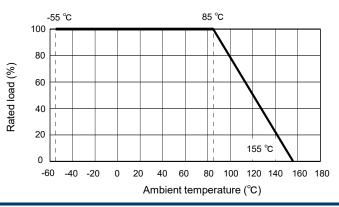
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. ERA8A

Metal Film (Thin Film) Chip Resistors, High Reliability Type

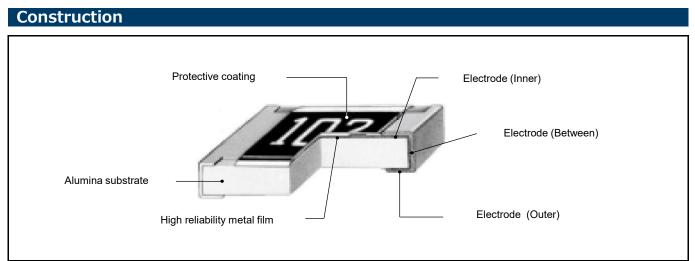
Rating	S									
Part No. (inch size)	Power rating ^{*1} (85 ℃) (W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Part No. (detail)	Resistance tolerance (%)	T.C.R. (×10 ⁻⁶ /K)	Resista range (Ω)	*4 *5	Category temperature range (℃)	AEC-Q200 Grade
ERA1A				ERA1AEB ERA1AEC	±0.1 ±0.25	±25	100 to 10 k	(E24,E96)		
(0201)	0.05	25	50	ERA1ARC ERA1ARB	±0.25 ±0.1	±10	100 to 10 k	(E24,E96)		-
				ERA1ARW	±0.05		1 k to 10 k	(E24,E96)		
				ERA2AKD ERA2AED	±0.5	±100	10 to 46.4	(E24,E96)		
FDAGA				ERA2AED ERA2AEC ERA2AEB	±0.5 ±0.25	±25	47 to 100 k	(E24,E96)		
ERA2A (0402)	0.063	50	100	ERA2APC	±0.1 ±0.25	±15	200 to 47 k	(E24,E96)		Grade 1
				ERA2APB ERA2ARC	±0.1 ±0.25	±10	200 to 47 k	(E24,E96)		
				ERA2ARB ERA3AHD	±0.1 ±0.5	±50		(E24,E96)		
			150	ERA3AED ERA3AEC	±0.5 ±0.25		10 to 46.4 47 to 330 k	(E24,E96)		
				ERA3AEC ERA3AEB	±0.25 ±0.1	±25	47 10 330 K	(E24,E90)		
ERA3A	0.1	75		ERA3APC	±0.1				-	
(0603)	0.1	10		ERA3APB	±0.1	±15	470 to 100 k	(E24,E96)		
				ERA3ARC	±0.25		1 k to 100 k			
				ERA3ARB	±0.1	±10		(E24,E96)	–55 to +155	
				ERA3ARW	±0.05				-	
				ERA6AHD	±0.5	±50	10 to 46.4	(E24,E96)		
				ERA6AED ERA6AEC	±0.5 ±0.25	105	47 to 1 M			
				ERA6AEC ERA6AEB	±0.25 ±0.1	±25	47 to 1 M	(E24,E96)		
ERA6A	0.125	100	200	ERA6APC	±0.1 ±0.25					Grade 0
(0805)	0.120	100	200	ERA6APB	±0.20	±15	470 to 100 k	(E24,E96)		Crade 0
				ERA6ARC	±0.25					
				ERA6ARB	±0.1	±10	1 k to 100 k	(E24,E96)		
				ERA6ARW	±0.05			())		
				ERA8AHD	±0.5	±50	10 to 46.4	(E24,E96)	-	
				ERA8AED	±0.5					
				ERA8AEC	±0.25	±25	47 to 1 M	(E24,E96)		
				ERA8AEB	±0.1					
ERA8A (1206) 0.25	150	300	ERA8APC	±0.25	±15	170 to 100 k	(E24,E96)			
(1200)				ERA8APB	±0.1	±15	470 to 100 k	(L24,E90)		
				ERA8ARC	±0.25					
				ERA8ARB	±0.1	±10	1 k to 100 k	(E24,E96)		
				ERA8ARW	±0.05					

*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Values, or Limiting Element Voltage listed above, whichever less.

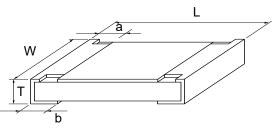

*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (2.5) × RCWV or Maximum Overload Voltage listed above, whichever less.

*4: E192 series resistance values are also available. Please contact us for details.


*5: Duplicated resistance values between E96, E192 and E24 series shall follow E24 Part Numbers. (apply three digit resistance value)

Power derating curve

For resistors operated in ambient temperatures above 85 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.

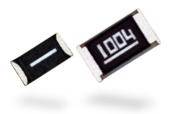


Metal Film (Thin Film) Chip Resistors, High Reliability Type

*0201/0402 size or E96 series do not have value markings.

Dimensions (not to scale)

						Unit : mm					
Part No.		Dimensions									
Part NO.	L	W	а	b	Т	 (Reference) (g/1000 pcs) 					
ERA1A	0.60±0.03	0.30±0.03	0.15±0.05	0.15±0.05	0.23±0.03	0.14					
ERA2A	1.00±0.10	0.50+0.10/-0.05	0.15±0.10	0.25±0.10	0.35±0.05	0.6					
ERA3A	1.60±0.20	0.80±0.20	0.30±0.20	0.30±0.20	0.45±0.10	2					
ERA6A	2.00±0.20	1.25±0.10	0.40±0.25	0.40±0.25	0.50±0.10	4					
ERA8A	3.20±0.20	1.60+0.05/-0.15	0.50±0.25	0.50±0.25	0.60±0.10	8					

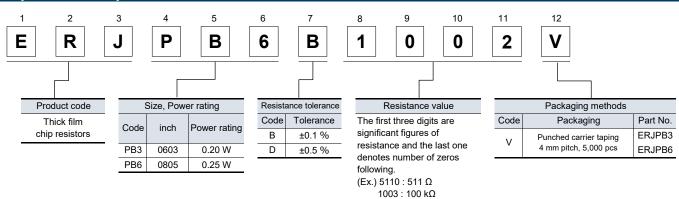

Performance

Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C
Overload	R<47 Ω : ±0.5 % R≧47Ω : ±0.1 %	Rated voltage x 2.5, 5 s
Resistance to soldering heat	R<47 Ω : ±0.5 % R≧47Ω : ±0.1 %	270 ℃, 10 s
Rapid change of temperature	R<47 Ω : ±0.5 % R≧47Ω : ±0.1 %	ERA1A, 2A:–55 ℃ (30 min.) / +125 ℃ (30 min.),1000 cycles ERA3A, 6A, 8A:–55 ℃ (30 min.) / +155 ℃ (30 min.),1000 cycles
High temperature exposure	R<47 Ω : ±0.5 % R≧47Ω : ±0.1 %	+155 °C, 1000 h
Damp heat, Steady state	R<47 Ω : ±0.5 % R≧47Ω : ±0.1 %	85 ℃, 85 %RH, 1000 h
Load life in humidity	R<47 Ω : ±0.5 % R≧47Ω : ±0.1 %	85 ℃, 85%RH, 10% rated power, 1.5 h ON / 0.5 h OFF cycle, 1000 h, Max. test voltage : ERA2A : 15.8 V, ERA3A : 23.7 V, ERA6A : 31.6 V, ERA8A : 47.4 V
Endurance at 85℃	R<47 Ω : ±0.5 % R≧47Ω : ±0.1 %	85℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

INDUSTRY High Precision Thick Film Chip Resistors

ERJ PB type

'anasonic



ERJ PB3, PB6 series

Features

- Achieve the resistance tolerance ±0.1 % with high reliability metal glaze thick film resistor
- Guarantee the temperature coefficient of Resistance ±50×10⁻⁶/K in high resistance range up to 1 MΩ
- High power : 0.20 W : 0603 inch /1608 mm size(ERJPB3)
 - : 0.25 W : 0805 inch /2012 mm size(ERJPB6)
- Reference Standard : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C
- AEC-Q200 compliant
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

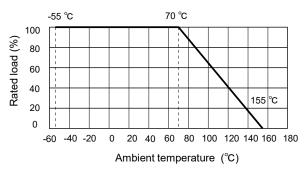
Explanation of part numbers

Ratings

Part No. (inch size)	Power rating ^{*1} (70 ℃)(W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{⁺3} (V)	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
ERJPB3 (0603)	0.20	150	200	±0.1 ±0.5	200 to 100 k (E24, E96)	±50	-55 to +155	Grade 0
ERJPB6 (0805)	0.25	150	200	±0.1 ±0.5	200 to 1 M (E24, E96)	±50	-55 10 + 155	Grade 0

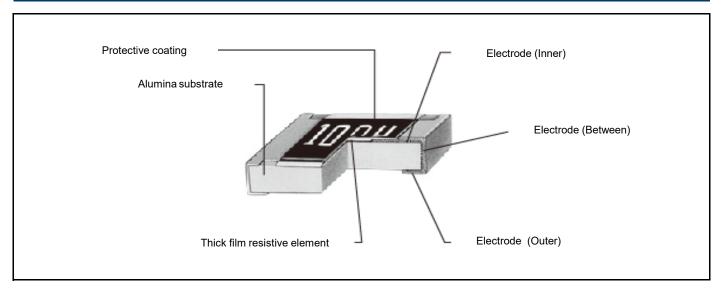
20

*1: Use it on the condition that the case temperature is below the upper category temperature.

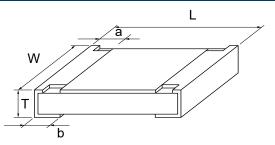

*2: Rated continuous working voltage (RCWV) shall be determined from RCWV=√Power rating × Resistance value, or Limiting Element Voltage listed above, whichever less.

*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum overload voltage listed above, whichever less.

Power derating curve


For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in

accordance with the figure on the right.



High Precision Thick Film Chip Resistors

Construction

Dimensions (not to scale)

Unit : mm

Part No.	Dimensions								
Part NO.	L	W	а	b	Т	(Reference) (g/1000 pcs)			
ERJPB3	1.60±0.15	0.80+0.15/-0.05	0.15+0.15/-0.10	0.25±0.10	0.45±0.10	2			
ERJPB6	2.00±0.20	1.25±0.10	0.25±0.20	0.40±0.20	0.60±0.10	4			

Performance

Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 ℃ / +125 ℃
Overload	±0.5 %	Rated voltage× 2.0, 5 s
Resistance to soldering heat	±0.5 %	270 °C, 10 s
Rapid change of temperature	±0.5 %	–55 ℃ (30 min.) / +155 ℃ (30 min.),100 cycles
High temperature exposure	±0.5 %	+155 ℃, 1000 h
Damp heat, Steady state	±0.5 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±0.5 %	60 ℃, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70 $^\circ\!$	±0.5 %	70 $^\circ$ C, Rated voltage , 1.5 h ON / 0.5 h OFF cycle, 1000 h

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to change without house, just leave, just Should a safety concern arise regarding this product, please be sure to contact us immediately. 21

Panasonic

INDUSTRY

Thick Film Chip Resistors

· store Som

(Low Resistance Type)

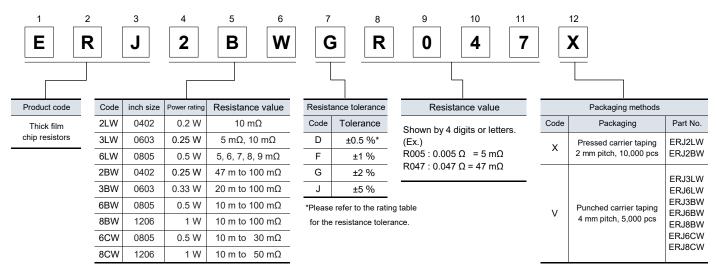
ERJ type

ERJ 2LW, 3LW, 6LW series

ERJ 2BW, 3BW, 6BW, 8BW, 6CW, 8CW series

ERJ 2B, 3B, 6D, 6B, 8B, 14B series

ERJ 3R, 6R, 8R, 14R, 12R, 12Z, 1TR series

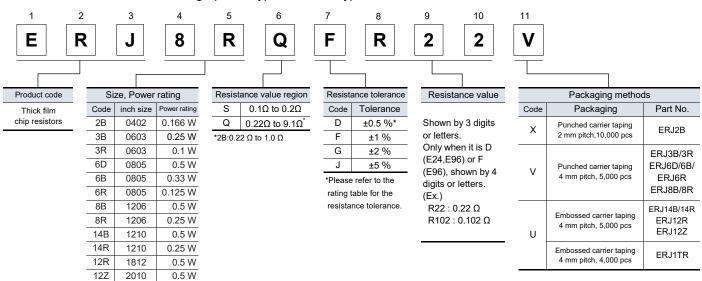

ERJ L03, L06, L08, L14, L12, L1D, L1W series

Features

- Current sensing resistor
- Small size and lightweight
- Realize both low-resistance & High-precision by original thick film resistive element & special electrode structure
- Suitable for both reflow and flow soldering
- Realize High-power by double-sided resistive elements structure that aimed to suppress temperature rising
 - : ERJ2LW, 3LW, 6LW, 2BW, 3BW, 6BW, 8BW, 6CW, 8CW
- Low TCR
- : ±75×10⁻⁶/K(ERJ6CW, ERJ8CW)
- Low resistance value
- : Thick film resistors available from 5 m Ω (ERJ3LW, 6LW)
- Reference standard
 - : IEC 60115-8, JIS C 5201-8, JEITA RC-2144
- AEC-Q200 compliant
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

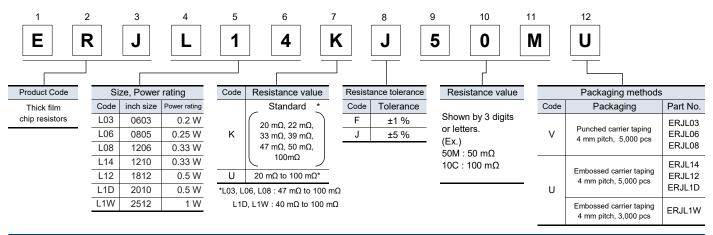
Explanation of part numbers

• ERJ2LW, 3LW, 6LW, 2BW, 3BW, 6BW, 8BW, 6CW, 8CW series <High power (double-sided resistive elements structure) type>



Explanation of part numbers

1TR


2512

• ERJ2BS/2BQ, 3BS/3BQ, 6BS/6BQ, 8BS/8BQ, 14BS/14BQ, 6D, 3R, 6R, 8R, 14R, 12R, 12Z, 1TR series
 <b

ERJL03, L06, L08, L14, L12, L1D, L1W series <Low TCR type>

1 W

Ratings

<High power (double-sided resistive elements structure) type>

Part No. (inch size)	Power rating (70 ℃) ^{*1} (W)	Resistance tolerance (%)	Resistance range ^{*2} (Ω)		T.C.R. (×10 ⁻⁶ /K)	Category temperature range(℃)	AEC-Q200 Grade	
ERJ2LW (0402)	0.2	±1, ±2, ±5	10 m		0 to +500			
ERJ3LW (0603)	0.25	±1, ±2, ±5	5 m		0 to +700	–55 to +125	Grade 1	
	0.25	1, 12, 10	10 m		0 to +300	-33 10 1 123	Glade I	
ERJ6LW (0805)	0.5	±1, ±2, ±5	5, 6, 7, 8, 9	m	0 to +300			
ERJ2BW (0402)	0.25	±1, ±2, ±5	47 m to 100 m	(E24)	0 to +300			
ERJ3BW (0603)	0.33	±1 ±2 ±5	±1, ±2, ±5	20 m to 100 m	(E24)	$20 \text{ m}\Omega \leq \text{R} < 39 \text{ m}\Omega$:0 to +250		
	0.55	1, 12, 10	20111010011	(Ľ24)	$39 \text{ m}\Omega \leq R \leq 100 \text{ m}\Omega^{-0.00000000000000000000000000000000000$			
ERJ6BW (0805)	0.5	±1, ±2, ±5	10 m to 100 m	(E24)	$10 \text{ m}\Omega \leq \text{R} < 15 \text{ m}\Omega$:0 to +300	–55 to +155	Grade 0	
	0.0	1, 12, 10		(ĽŹŦ)	$15 \text{ m}\Omega \leq R \leq 100 \text{ m}\Omega^{-0.000} \text{ to +200}$	-0010 1100	Clade 0	
					$10 \text{ m}\Omega \leq \text{R} \leq 20 \text{ m}\Omega$:0 to +200			
ERJ8BW (1206)	1	±1, ±2, ±5	10 m to 100 m	(E24)	20 m $\Omega \le R \le 47$ m Ω :0 to +150			
					47 m $\Omega \le R \le 100$ m Ω ^{:0 to +100}			
ERJ6CW (0805)	0.5	±0.5, ±1, ±2, ±5	10 m to 30 m	(E24)	±75	-55 to +125	Grade 1	
ERJ8CW (1206)	1	±1, ±2, ±5	10 m to 50 m	(E24)	±75	-55 10 +125	Grade I	

*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: Please contact us when resistors of irregular series are needed.

• Rated Continuous Working Voltage (RCWV) shall be determined from RCWV= √Power Rating × Resistance Value.

Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCW.

Ratings

<High power type>

Part No. (inch size)	Power rating (70 ℃) ^{*1} (W)	Resistance tolerance (%)	Resistance range ^{*3} (Ω)		T.C.R. (×10 ⁻⁶ /K)	Category temperature range(℃)	AEC-Q200 Grade
ERJ2BS (0402)	0.166	±1, ±2, ±5	0.10 to 0.20	(E24)	$0.10~\Omega \leq R < 0.22~\Omega$ $$: 0 to +300 $$		
ERJ2BQ (0402)	0.100	II, IZ, IJ	0.22 to 1.0	(E24)	$0.22~\Omega \leq R \leq 1.0~\Omega$ $$: 0 to +250 $$		
ERJ3BS (0603)			0.10 to 0.20	(E24)	$0.10 \ \Omega \le R \le 0.22 \ \Omega : 0 \text{ to } +300$		
ERJ3BQ (0603)	0.25	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +300 $$		
ERJ3DQ (0003)			1.0 to 9.1	(E24)	$1.0~\Omega \leq R \leq 9.1~\Omega ~: \pm 200$		
ERJ6DS (0805)			0.10 to 0.20	(E24 ^{*2})	$0.10 \ \Omega \le R \le 0.22 \ \Omega : 0 \text{ to } +150$		
ERJ6DQ (0805)	0.5	±0.5, ±1, ±2, ±5	0.22 to 9.1	(E24 ^{*2})	$0.22 \ \Omega \le R \le 1.0 \ \Omega \ : 0 \text{ to } +100$		
EKJODQ (0005)			0.22 10 9.1	(E24)	$1.0 \ \Omega \leq R \leq 9.1 \ \Omega \ : \pm 100$		
ERJ6BS (0805)			0.10 to 0.20	(E24)	$0.10~\Omega \leq R < 0.22~\Omega$ $$: 0 to +250 $$	–55 to +155	Grade 0
ERJ6BQ (0805)	0.33	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +250 $$		
			1.0 to 9.1	(E24)	$1.0 \ \Omega \leq R \leq 9.1 \ \Omega \ : \pm 200$		
ERJ8BS (1206)			0.10 to 0.20	(E24)	$0.10~\Omega \leq R < 0.22~\Omega$ $$: 0 to +250 $$	-	
	0.5	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +250		
ERJ8BQ (1206)			1.0 to 9.1	(E24)	$1.0 \ \Omega \leq R \leq 9.1 \ \Omega $: ±200		
ERJ14BS (1210)			0.10 to 0.20	(E24)	$0.10~\Omega \leq R < 0.22~\Omega$ $$: 0 to +200 $$		
ERJ14BQ (1210)	0.5	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +200 $$		
ENJ 14DQ (1210)			1.0 to 9.1	(E24)	$1.0~\Omega \leq R \leq 9.1~\Omega ~: \pm 100$		

*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: E96 series resistance values are also available. Please contact us for details.

*3: Please contact us when resistors of irregular series are needed.

• Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=\/Power Rating × Resistance Value.

• Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCW.

<Standard type>

Part No. (inch size)	Power rating (70 ℃) ^{*1} (W)	Resistance tolerance (%)	Resistand range ^{*2} (Ω)		T.C.R. (×10 ⁻⁶ /K)	Category temperature range(℃)	AEC-Q200 Grade
ERJ3RS (0603)			0.10 to 0.20	(E24)	$0.10 \ \Omega \le R \le 0.22 \ \Omega : 0 \text{ to } +300$		
ERJ3RQ (0603)	0.1	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R \leq 1.0~\Omega$ $$: 0 to +300 $$		
			1.0 to 9.1	(E24)	$1.0 \ \Omega \leq R \leq 9.1 \ \Omega \ : \pm 200$		
ERJ6RS (0805)			0.10 to 0.20	(E24)	$0.10 \ \Omega \le R \le 0.22 \ \Omega : 0 \text{ to } +250$		
ERJ6RQ (0805)	0.125	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +250		
			1.0 to 9.1	(E24)	$1.0~\Omega \leq R \leq 9.1~\Omega ~: \pm 200$		
ERJ8RS (1206)			0.10 to 0.20	(E24)	$0.10 \ \Omega \le R \le 0.22 \ \Omega : 0 \text{ to } +250$		
ERJ8RQ (1206)	0.25	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +250		
ERJORQ (1200)			1.0 to 9.1	(E24)	$1.0 \ \Omega \leq R \leq 9.1 \ \Omega \ : \pm 200$		
ERJ14RS (1210)			0.10 to 0.20	(E24)	$0.10 \ \Omega \le R \le 0.22 \ \Omega : 0 \text{ to } +200$		
ERJ14RQ (1210)	0.25	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22 \ \Omega \le R \le 1.0 \ \Omega : 0 \sim +200$	-55 to +155	Grade 0
EKJ14KQ(1210)			1.0 to 9.1	(E24)	$1.0 \ \Omega \leq R \leq 9.1 \ \Omega \ : \pm 100$		
ERJ12RS (1812)			0.10 to 0.20	(E24)	$0.10 \ \Omega \le R \le 0.22 \ \Omega : 0 \text{ to } +200$		
ERJ12RQ (1812)	0.5	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +200 $$		
			1.0 to 9.1	(E24)	$1.0 \ \Omega \leq R \leq 9.1 \ \Omega \ : \pm 100$		
ERJ12ZS (2010)			0.10 to 0.20	(E24)	$0.10 \ \Omega \le R \le 0.22 \ \Omega : 0 \text{ to } +200$		
ERJ12ZQ (2010)	0.5	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +200 $$		
LINJ122Q (2010)			1.0 to 9.1	(E24)	$1.0 \ \Omega \leq R \leq 9.1 \ \Omega \ : \pm 100$		
ERJ1TRS (2512)			0.10 to 0.20	(E24)	$0.10~\Omega \leq R < 0.22~\Omega$ $$: 0 to +200 $$		
ERJ1TRQ (2512)	1	±1, ±2, ±5	0.22 to 0.91	(E24)	$0.22~\Omega \leq R < 1.0~\Omega$ $$: 0 to +200 $$		
			1.0 to 9.1	(E24)	$1.0 \ \Omega \le R \le 9.1 \ \Omega \ : \pm 100$		

*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: Please contact us when resistors of irregular series are needed.

• Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=./Power Rating × Resistance Value.

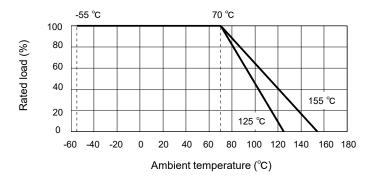
· Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCW.

Ratings

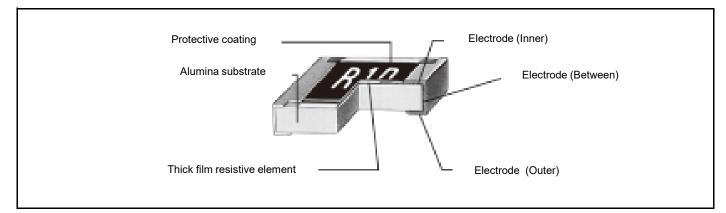
<Low TCR type>

Part No. (inch size)	Power rating (70 ℃) ^{*1} (W)	Resistance tolerance (%)	Resistance range ^{*2} (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range(℃)	AEC-Q200 Grade
ERJL03 (0603)	0.2	±1, ±5	47 m to 100 m	±200		
ERJL06 (0805)	0.25	±1, ±5	47 m to 100 m	±100		
ERJL08 (1206)	0.33	±1, ±5	47 m to 100 m	±100		
ERJL14 (1210)	0.33	±1, ±5	20 m to 100 m		–55 to +125	Grade 1
ERJL12 (1812)	0.5	±1, ±5	20 m to 100 m	R < 47 mΩ : ±300		
ERJL1D (2010)	0.5	±1, ±5	40 m to 100 m	R ≥ 47 mΩ : ±100		
ERJL1W (2512)	1	±1, ±5	40 m to 100 m			

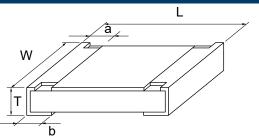
*1: Use it on the condition that the case temperature is below the upper category temperature.


*2: Standard R.V. : 20 mΩ, 22 mΩ, 33 mΩ, 39 mΩ, 47 mΩ, 50 mΩ, 100 mΩ, Custom R.V. : Each 1 mΩ within upper range.

• Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=/Power Rating × Resistance Value.


Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCW.

Power derating curve


For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.

Construction

Dimensions (not to scale)

			Dimensions			Unit : mm Mass (Weight)
Part No.	L	W	а	b	Т	(Reference) (g/1000 pcs)
ERJ2LW	1.00±0.10	0.50+0.10/-0.05	0.25±0.10	0.25±0.10	0.40±0.05	0.8
ERJ2BW	1.00±0.10	0.50+0.10/-0.05	0.24±0.10	0.24±0.10	0.35±0.05	0.8
ERJ2B	1.00±0.10	0.50+0.10/-0.05	0.20±0.10	0.27±0.10	0.35±0.05	0.8
ERJ3LW (5 mΩ)	1.60±0.15	0.80±0.15	0.50±0.20	0.50±0.20	0.55±0.10	3
ERJ3LW (10 mΩ) ERJ3BW	1.60±0.15	0.80±0.15	0.40±0.20	0.40±0.20	0.55±0.10	3
ERJ3R ERJ3B ERJL03	1.60±0.15	0.80+0.15/-0.05	0.30±0.20	0.30±0.15	0.45±0.10	2
ERJ6LW	2.00±0.20	1.25±0.20	0.63±0.20	0.63±0.20	0.70±0.10	6
ERJ6BW	2.00±0.20	1.25±0.20	0.55±0.20	0.55±0.20	0.65±0.10	6
ERJ6CW (10 to 13 mΩ)	0.05+0.00	1 00 0 00	0.60±0.20	0.60±0.20	0.05-0.40	
ERJ6CW (15 to 30 mΩ)	- 2.05±0.20	1.30±0.20	0.45±0.20	0.45±0.20	0.65±0.10	6
ERJ6D	2.00±0.20	1.25±0.10	0.40±0.20	0.55±0.25	0.60±0.10	5
ERJ6R ERJ6B ERJL06	2.00±0.20	1.25±0.10	0.40±0.20	0.40±0.20	0.60±0.10	5
ERJ8BW	3.20±0.20	1.60±0.20	1.00±0.20	1.00±0.20	0.65±0.10	13
ERJ8CW (10 to 16 mΩ)	3.20±0.20	1.60±0.20	1.10±0.20	1.10±0.20	0.65±0.10	13
ERJ8CW (18 to 50 mΩ)	3.20±0.20	1.60±0.20	0.60±0.20	0.60±0.20	0.65±0.10	13
ERJ8R ERJ8B ERJL08	3.20+0.05/-0.20	1.60+0.05/-0.15	0.50±0.20	0.50±0.20	0.60±0.10	10
ERJ14R ERJ14B ERJL14	3.20±0.20	2.50±0.20	0.50±0.20	0.50±0.20	0.60±0.10	16
ERJ12R ERJL12	4.50±0.20	3.20±0.20	0.50±0.20	0.50±0.20	0.60±0.10	27
ERJ12Z ERJL1D	5.00±0.20	2.50±0.20	0.60±0.20	0.60±0.20	0.60±0.10	27
ERJ1TR	6.40±0.20	3.20±0.20	0.65±0.20	0.60±0.20	0.60±0.10	45
ERJL1W	6.40±0.20	3.20±0.20	0.65±0.20	1.30±0.20	1.10±0.10	79

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

Performance

• ERJ2LW, 3LW, 6LW, 2BW, 3BW, 6BW, 8BW, 6CW, 8CW series <High power (double-sided resistive elements structure) type>

Test item	Performance requirements ⊿R	Test conditions		
Resistance	Within specified tolerance	20 °C		
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C		
Overload	±2 %	ERJ6LW : Rated voltag× 1.77, 5 s ERJ8BW (R > 0.05 Ω) : Rated voltag× 1.77, 5 s Other : Rated voltag× 2.0, 5 s		
Resistance to soldering heat	±1 %	270 °C, 10 s		
Rapid change of temperature	±1 % ERJ2LW : ±2 %	–55 ℃ (30min.) / +155 ℃ (ERJ□LW, ERJ□CW : +125 ℃) (30 min.), 100 cycles		
High temperature exposure	±1 %	+155 ℃ (ERJ□LW, ERJ□CW : +125 ℃), 1000 h		
Damp Heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h		
Load life in humidity	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h		
Endurance at 70 ℃	±3 %	70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h		

• ERJ2BS/2BQ, 3BS/3BQ, 6BS/6BQ, 8BS/8BQ, 14BS/14BQ, 6D, 3R, 6R, 8R, 14R, 12R, 12Z, 1TR series
 <b

Test item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C
Overload	±2 %	Rated voltage× 2.5 (ERJ6D : ×1.77), 5 s
Resistance to soldering heat	±1 %	270 °C, 10 s
Rapid change of temperature	±1 %	–55 ℃ (30 min.) / +155 ℃ (30 min.), 100 cycles
High temperature exposure	±1 %	+155 ℃, 1000 h
Damp Heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70 ℃	±3 %	70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

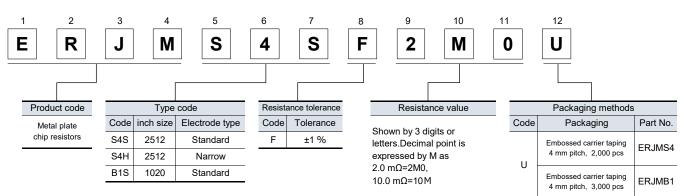
\bullet ERJL03, L06, L08, L14, L12, L1D, L1W series < Low TCR type >

Test item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C
Overload	±2 %	Rated voltage× 2.5, 5 s
Resistance to soldering heat	±1 %	270 °C, 10 s
Rapid change of temperature	±1 %	–55 ℃ (30 min.) / +125 ℃ (30 min.), 100 cycles
High temperature exposure	±1 %	+125 ℃, 1000 h
Damp Heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70 ℃	±3 %	70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

Panasonic

INDUSTRY

Current Sensing Resistors, Metal Plate Type


ERJ MS, MB type

ERJ MS4, MB1 series

Features

- Ideal for current sensing solution
- Small case size with high power
- Metal plate bonding technology. Excellent long term stability
- Outer Resin with high heat dissipation. Wide temperature range (-65 $^{\circ}$ C to +170 $^{\circ}$ C)
- AEC-Q200 compliant
- RoHS compliant
- ISO9001, ISO/TS16949 certified
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

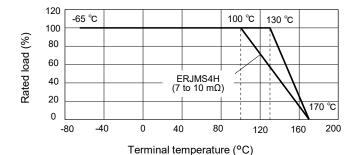
Ratings

Part No. (inch size)	Power rating (70 ℃) (W)	Resistance range (mΩ)	Resistance tolerance (%)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	Terminal temp. upper limit (℃)	AEC-Q200 Grade
ERJMS4S (2512)	3	1, 2, 3, 4	F : ±1	±75		130	
ERJMS4H	3	5, 6	F : ±1	±75	65 to +170		Grade 0
(2512)	2	7, 8, 9, 10	F : ±1	±75	-03 10 +170	100	Grade 0
ERJMB1S (1020)	2	1, 2, 3, 4, 5	F : ±1	±75		130	

* Please contact us when resistors of irregular series are needed.

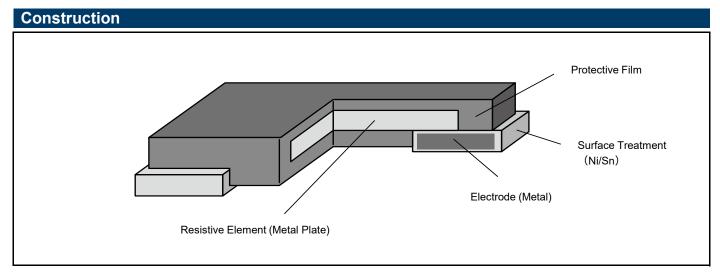
Power derating curve

If the terminal temperature of the resistor is more

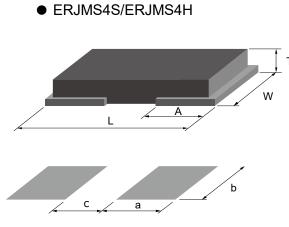

than terminal temperature upper limit value of the

rated table, please reduce the rated power according

to the Power Derating Curve shown in the figure on the right. <Supplemented>

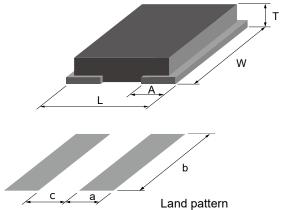

In the case of the temperature measurement of the terminal portion of the resistor, Please perform under the following conditions.

- 1) Terminal temperature measurement, please apply the temperature of the higher of either the left or right electrode upper surface of the resistor.
- Please measure the temperature of the resistor in the land pattern printed of circuit board and plan to use by real conditions.



Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

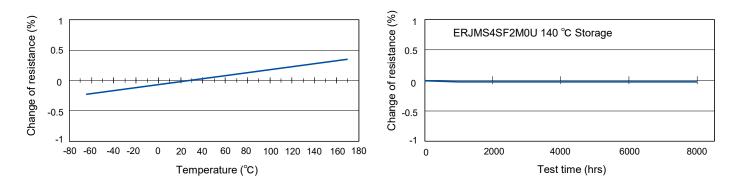
Current Sensing Resistors, Metal Plate Type



Dimensions in mm (not to scale), Recommended land pattern

Land pattern

● ERJMB1S



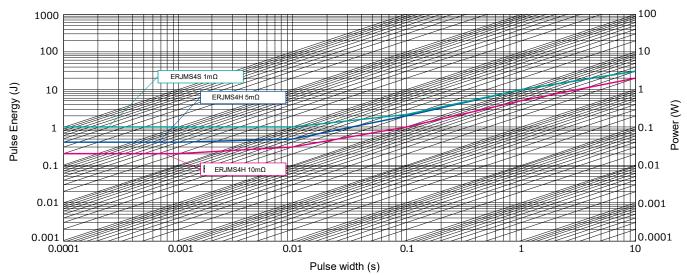
Unit : mm

Part No.	Dimensions					Recommended land pattern			
	L	W	A	Т	а	b	С	(g/1000 pcs)	
ERJMS4S	6.40±0.25	3.20±0.25	2.20±0.25	1.20±0.15	2.7	3.4	2.0	120	
ERJMS4H	6.40±0.25	3.20±0.25	1.25±0.25	1.20±0.15	1.7	3.4	4.0	115	
ERJMB1S	2.55±0.25	5.00±0.25	0.68 +0.15/-0.20	0.90±0.15	1.15	5.5	1.1	40	

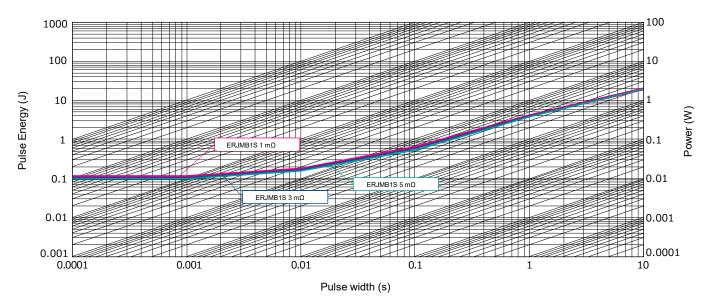
Long-term stability

29

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.


Should a safety concern arise regarding this product, please be sure to contact us immediately.

Maximum pulse energy respectively pulse power for continuous operation


Referance Data

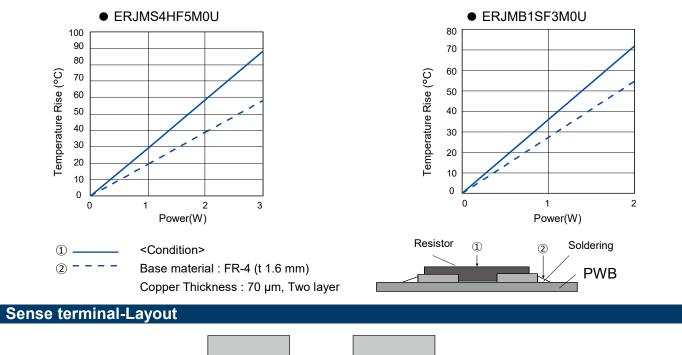
Condition : Room Temperature, OFF : 10 s, 1000 cycle, Wave form : Square Change of Resistance = ± 1 %

ERJMS4S/ERJMS4H

• ERJMB1S

Current Sensing Resistors, Metal Plate Type

Performance (AEC-Q200)


• ERJMS4S/ERJMS4H

Test item	Performance requirements ⊿R	Typical value ⊿R	Test condition
Thermal shock	±1 %	0.20 %	–55 ℃ /+155 ℃,1000 cycles
Overload	±0.5 %	0.10 %	Rated power x 3, 5 s
Solderability	> 95% coverage	> 95% coverage	245 ℃, 3 s
Resistance to solvents	No damage	No damage	MIL-STD-202 method 215, 2.1a, 2.1d
Low temperature storage and operation	±0.5 %	0.03 %	–65 ℃, 24 h
Resistance to soldering heat	±0.5 %	0.10 %	MIL-STD-202 method 210 (260 ℃, 10 s)
Moisture resistance	±0.5 %	0.10 %	MIL-STD-202 method 106
Shock	±0.5 %	0.10 %	MIL-STD-202 method 213-A
Vibration, High frequency	±0.5 %	0.05 %	10 to 2000 (Hz)
Life	±1 %	0.30 %	70 ℃, Rated Power, 2000 h
Storage life at elevated temperature	±1 %	0.30 %	170 ℃, 2000 h
High temperature characteristics	±0.5 %	0.05 %	140 ℃, 2000 h
Frequency characteristics	< 5 nH	< 2 nH	Inductance

• ERJMB1

Test item	Performance requirements ⊿R	Typical value ⊿R	Test condition
Thermal shock	±1 %	0.30 %	–55 ℃ /+155 ℃, 1000 cycles
Overload	±1 %	0.30 %	Rated power x 2.5, 5 s
Solderability	> 95% coverage	> 95% coverage	245 ℃, 3 s
Resistance to solvents	No damage	No damage	MIL-STD-202 method 215, 2.1a, 2.1d
Low temperature storage and operation	±0.5 %	0.03 %	–65 ℃, 24 h
Resistance to soldering heat	±0.5 %	0.10 %	MIL-STD-202 method 210 (260 ℃, 10 s)
Moisture resistance	±0.5 %	0.10 %	MIL-STD-202 method 106
Shock	±0.5 %	0.10 %	MIL-STD-202 method 213-A
Vibration, High frequency	±0.5 %	0.05 %	10 to 2000 (Hz)
Life	±1 %	0.30 %	70 ℃, Rated Power, 2000 h
Storage life at elevated temperature	±1 %	0.30 %	170 ℃, 2000 h
High temperature characteristics	±0.5 %	0.05 %	140 ℃, 2000 h
Frequency characteristics	< 5 nH	< 2 nH	Inductance

Temperature rise

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to charge without house, i.e., sector, should a safety concern arise regarding this product, please be sure to contact us immediately. 31

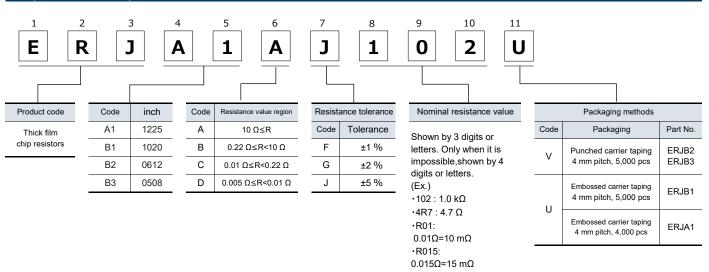
Sense terminal

Land

Panasonic

INDUSTRY

R10 R10


Features

- High solder-joint reliability by wide terminal construction
- Excellent heat dissipation characteristics by wide terminal construction
- AEC-Q200 compliant
- RoHS compliant

Recommended applications

- Automotive electronic circuits including ECUs (Electrical control unit), anti-lock breaking systems and air-bag systems.
- Current sensing for power supply circuits in a variety of equipment.
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

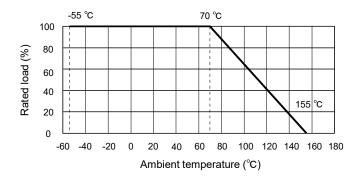
High Power Chip Resistors (Wide Terminal Type)

Part No. (inch size)	Power rating ^{*1} (W)	Rated ambient temperature ^{*2} (℃)	Rated terminal part temperature ^{*2} (℃)	Limiting element voltage ^{*3} (V)	Maximum overload voltage ^{*4} (V)	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC- Q200 Grade
ERJA1 (1225)	1.33	70	-	200	400	±1	100m to 10k (E24)	±100		Grade (
						±2, ±5	10m to 10k (E24)	10mΩ≤R<100mΩ ∶ ±350 100mΩ≤R≤10kΩ ∶ ±200		
ERJB1 (1020)	2 (R≤10Ω)	70	125	200	400	±1	10m to 10 (E24)	±1 %: 10mΩ≤R<22mΩ:0 to +350		
						±2, ±5		22mΩ≤R<47mΩ : 0 to +200 47mΩ≤R<100mΩ : 0 to +150 100mΩ≤R≤10kΩ : ±100		
	1 (R>10Ω)	70	95			±1	11 to 10k (E24)	±2 %, ±5 %: 10mΩ≤R<22mΩ:0 to +350		
						±2, ±5		22mΩ≤R<100mΩ:0 to +200 100mΩ≤R≤10kΩ :±200		
ERJB2 (0612)	1.5 (R≤1kΩ)	-	125	200	400	±1 ±2, ±5	10m to 1k (E24)	±1%:		
	0.75 (R>1kΩ)	-	90			±1 ±2, ±5	1.1k to 1M (E24)	10mΩ≤R<22mΩ ∶ 0 to +300 22mΩ≤R<47mΩ ∶ 0 to +200		
	1 (R≤10Ω)	70	-			±1 ±2	10m to 10 (E24)	47mΩ≤R<100mΩ:0 to +150 100mΩ≤R≤220mΩ:0 to +100	55 ~ +155	
						±5	5, 6, 7, 8, 9,10m to 10 (E24)	220mΩ≤R≤1MΩ : ±100 ±2 %, ±5 % : 5mΩ≤R<22mΩ : 0 to +300 22mΩ≤R<47mΩ : 0 to +200		
								$47m\Omega \le R < 100m\Omega : 0 \text{ to } +150$ $100m\Omega \le R < 220m\Omega : 0 \text{ to } +200$		
	0.75 (R>10Ω)	70				±1 ±2, ±5	11 to 1M (E24)	220mΩ≤R≤1MΩ:±200		
ERJB3 (0508)	1	-	105	150	200	±1 ±2, ±5	20m to 10 (E24) 20m to 1 (E24)	±1%: 20mΩ≤R<47mΩ:0 to +300 47mΩ≤R<1Ω:0 to +200		
	0.5 (R≤1Ω)	70	-			±1 ±2, ±5		1Ω≤R≤10Ω : ±100 ±2 %, ±5 % : 20mΩ≤R<47mΩ : 0 to +300		
	0.33 (R>1Ω)	70	-			±1 ±2, ±5	1.1 to 10 (E24)	$47m\Omega \le R < 1\Omega : 0 \text{ to } +300$ $1\Omega \le R < 1\Omega : 0 \text{ to } +200$ $1\Omega \le R \le 10\Omega : \pm 200$		

*1: Use it on the condition that the case temperature is below the upper category temperature.

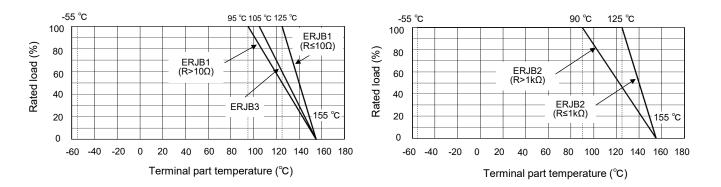
Ratings

*2: If there is a doubt whether the rated ambient temperature or the rated terminal part temperature is used, give priority to the rated terminal part temperature.

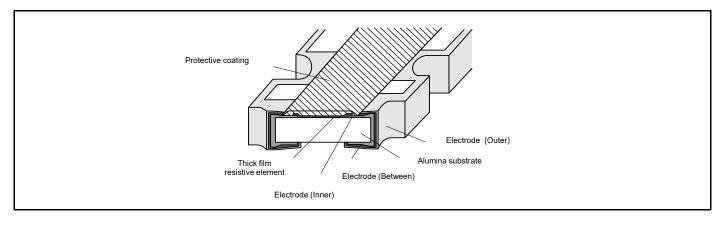

- *3: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.
- *4: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

Ratings

Power derating curve

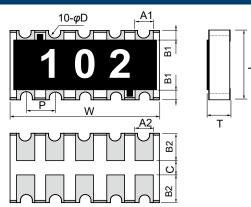

• For resistors operated in ambient rated ambient temperature, power rating shall be derated in accordance with the figure below.

In addition, please use under the condition that the product temperature is below the upper category temperature.

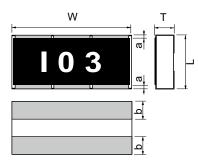


•For resistors operated in ambient rated terminal part temperature, power rating shall be derated in accordance with the figure below.

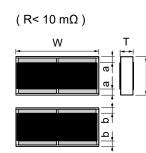
In addition, please use under the condition that the product temperature is below the upper category temperature.

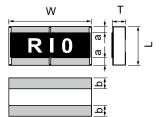


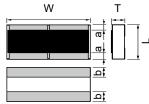
Construction (Example : ERJA1 type)



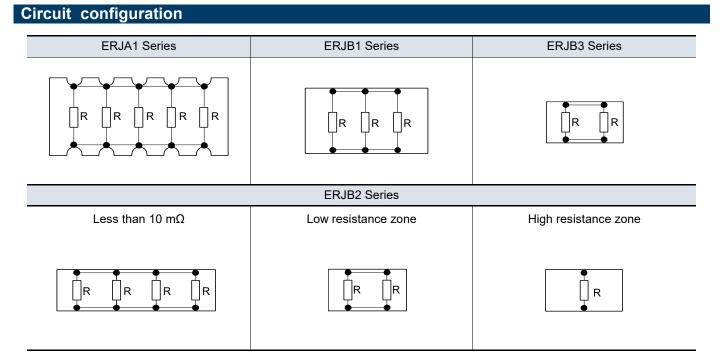
High Power Chip Resistors (Wide Terminal Type)


Dimensions (not to scale)


Part No.						
Tart NO.	L	W	A ₁	B ₁	Т	(Reference) (g/1000 pcs)
	3.20±0.20	6.40±0.20	0.70±0.20	0.45±0.20	0.55±0.10	
ERJA1	A ₂	B ₂	Р	øD	С	40
_	0.70±0.20	1.25±0.15	1.27±0.10	0.30+0.10/-0.20	0.4 min.	


Part No.	Dimensions						
Part No.	L	W	а	b	Т	 (Reference) (g/1000 pcs) 	
ERJB1	2.50±0.20	5.00±0.20	0.25±0.20	0.90±0.20	0.55±0.20	27	

Unit : mm Part No. Dimensions Mass (Weight) (Reference) (g/1000 pcs) ERJB2 W Т L а b 0.30±0.20 0.65±0.15 5 mΩ≤R<10 mΩ 0.30±0.20 10 mΩ≤R<220 mΩ 1.60±0.15 3.20±0.20 11 0.50±0.20 0.55±0.15 220 mΩ≤R≤1 MΩ 0.25±0.20


						Unit : mm
Part No.			Dimensions			Mass (Weight) (Reference)
Part No.	L	W	а	b	Т	(g/1000 pcs)
ERJB3	1.25±0.10	2.00±0.15	0.25±0.20	0.40±0.20	0.50±0.10	4.8

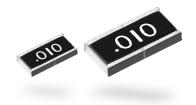
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

Unit : mm

High Power Chip Resistors (Wide Terminal Type)

Performance


Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 ℃ / +125 ℃
Overload	±2 %	ERJA1, ERJB1 (1W) : Rated voltag x 2.5, 5 s ERJB2 (0.75 W) : Rated voltag x 2.2, 5 s ERJB1 (2 W), ERJB2 (1.5 W, 1 W), ERJB3 : Rated voltag x 2.0, 5 s
Resistance to soldering heat	±1 %	270°C, 10 s
Rapid change of temperature	±2 %	–55 ℃ (30 min.) / +125 ℃ (30 min.),1000 cycles
High temperature exposure	±1 %	+155 ℃, 1000 h
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity 1 (Applicable to rated ambient temperature-regulated products)	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage 1.5 h ON / 0.5 h OFF cycle, 1000 h
Load life in humidity 2 (Applicable to rated ambient temperature-regulated products)	±3 %	85 °C, 85 %RH, Rated power 10%, Continuously power, 1000 h
Durability at rated ambient temperature or rated terminal part temperature	±3 %	Rated ambient temperature or rated terminal part temperature, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

36

INDUSTRY

Low TCR High Power Chip Resistors (Wide Terminal Type)

ERJ D type

ERJ D1, D2 series

Features

- Achieved High power and low TCR (±100×10⁻⁶/K) using wide terminal electrode structure and original material
- Suitable for small size/high power current detection (Low TCR enables high accuracy of current detection)
- High solder-joint reliability by wide terminal construction
- Excellent heat dissipation characteristics by wide terminal construction
- AEC-Q200 compliant
- RoHS compliant

Recommended applications

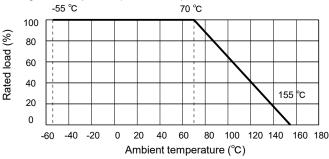
- Automotive electronic circuits including ECUs (Electrical control unit), anti-lock breaking systems and air-bag systems.
- Current sensing for power supply circuits in a variety of equipment.
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers 2 6 9 11 12 1 З 8 10 1 R 0 1 0 U Ε R J D D Product code Resistance value Packaging methods Resistance Power Code inch Resistance value region rating tolerance Code Packaging Part No. Thick film Shown by 4 digits or chip resistors D1C 22 mΩ ≤R≤ 200 mΩ Code Tolerance letters Embossed carrier taping 1020 2 W U ERJD1 4 mm pitch, 5,000 pcs D1D $10 \text{ m}\Omega \leq R \leq 20 \text{ m}\Omega$ F ±1 % (Ex.) ·R010: D2C 33 mΩ ≤R≤ 200 mΩ J ±5 % Punched carrier taping ERJD2 0612 1 W v 0.010 Ω=10 mΩ 4 mm pitch, 5,000 pcs D2D $10 \text{ m}\Omega \leq R \leq 30 \text{ m}\Omega$

Ratings

Part No. (inch size)	Power rating (70 ℃) ^{*1} (W)	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC- Q200 Grade
ERJD1 (1020)	2	±1, ±5	10 m to 200 m (E24)	±100	–55 to +155	Grade 0
ERJD2 (0612)	1	±1, ±5	10 m to 200 m (E24)	±100	-55 10 +155	Glade 0

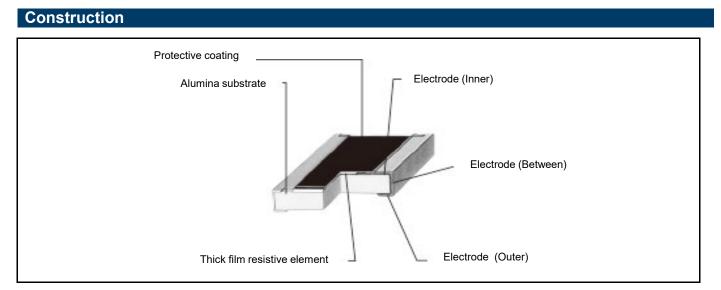
*1: Use it on the condition that the case temperature is below the upper category temperature.

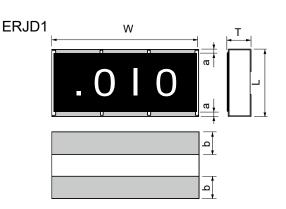

· Please contact us when resistors of irregular series are needed.

• Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=\/Power Rating × Resistance Value.

Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV.

Power derating curve

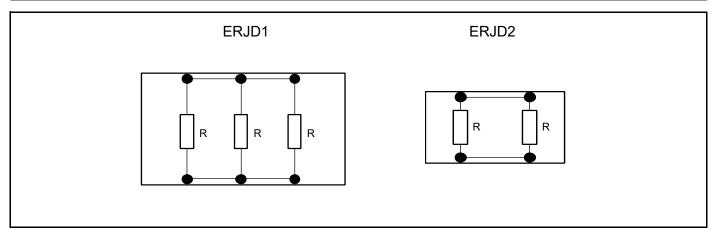

For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.


Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use

Should a safety concern arise regarding this product, please be sure to contact us immediately.

Low TCR High Power Chip Resistors (Wide Terminal Type)

Dimensions (not to scale)

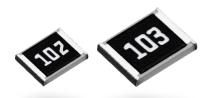


ERJD2 W Ø B ۽ م ۽ م

Unit : mm

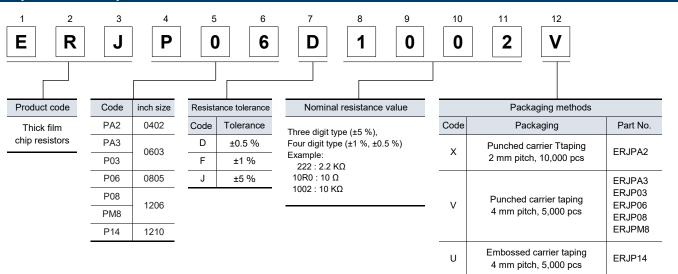
Part No.	Dimensions						
Fait NO.	L	W	а	b	Т	(Reference) (g/1000 pcs)	
ERJD1	2.50±0.20	5.00±0.20	0.90±0.20	0.30±0.20	0.60±0.20	27	
ERJD2	1.60±0.15	3.20±0.20	0.50±0.20	0.30±0.20	0.65±0.15	11	

Circuit configuration


Low TCR High Power Chip Resistors (Wide Terminal Type)

Performance		
Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C
Overload	±2 %	Rated voltag x 2.0, 5 s
Resistance to soldering heat	±1 %	270 °C, 10 s
Rapid change of temperature	±2 %	–55 ℃ (30 min.) / +125 ℃ (30 min.), 1000 cycles
High temperature exposure	±1 %	+155 ℃, 1000 h
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70 ℃	±3 %	70 $^\circ C$, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

INDUSTRY


Anti-Surge Thick Film Chip Resistors ERJ P, PA,PM type ERJ PA2, PA3, P03, P06, P08, PM8, P14 series

Features

- ESD surge characteristics superior to standard metal film resistors
- High reliability : Metal glaze thick film resistive element and three layers of electrodes
- Suitable for both reflow and flow soldering
- High power 0.20 W : 0603 inch / 1608 mm size (ERJP03)
 - 0.20 W : 0402 inch / 1005 mm size (ERJPA2)
 - 0.33 W : 0603 inch / 1608 mm size (ERJPA3)
 - 0.50 W : 0805 inch / 2012 mm size (ERJP06), 1210 inch / 3225 mm size (ERJP14)
 - 0.66 W : 1206 inch / 3216 mm size (ERJP08)
- High precision, High voltage, High resistance value (ERJPM8)
 - : Limiting element voltage 500 V, Resistance tolerance ± 1 %, TCR ± 100 (x 10^{-6} / K)
- Reference standard : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C
- AEC-Q200 compliant
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

Anti-Surge Thick Film Chip Resistors

Part No. (inch size)	Power rating ^{*1} (W)	Rated ambient temperature ^{*2} (℃)	Rated terminal part temperature ^{*2} (℃)	Limiting element voltage ^{*3} (V)	Maximum overload voltage ^{*4} (V)	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC- Q200 Grade		
	0.20	70				±0.5, ±1	10 to 1M (E24, E96)			Grade 1		
ERJPA2	0.20	70	-	50	100	±5	10 to 1M (E24)	±0.5, ±1 : ±100		Grade 1		
(0402)	0.25	_	100	50	100	±0.5, ±1	10 to 1M (E24, E96)	±5 : ±200				
	0.25	-	100			±5	10 to 1M (E24)					
	0.25	105				±0.5, ±1	10 to 1M (E24, E96)					
ERJPA3	0.25	105	-	150		±5	1 to 1.5M (E24)	±0.5, ±1 : ±100	±0.5, ±1 : ±100			
(0603)	0.33 -		2	0.22	130	150	200	±0.5, ±1	10 to 1M (E24, E96)	±5 : ±200		
		-	100	100		±5	1 to 1.5M (E24)					
) 70			150 200	±0.5	10 to 1M (E24, E96)	±150 R<10Ω : -150 to +400 10Ω≤R : ±200				
ERJP03 (0603)	0.20		-	150		±1	10 to 1M (E24, E96)					
						±5	1 to 1M (E24)			Grade 0		
						±0.5, ±1	10 to 1M (E24, E96)	R<33Ω ∶±300 33Ω≤R ∶±100				
ERJP06 (0805)	0.50	70	115	400	600	±5	1 to 3.3M (E24)	R<10Ω : −100 to +600 10Ω≤R<33Ω : ±300 33Ω≤R : ±200				
ERJP08			105		1000	±0.5, ±1	10 to 1M (E24, E96)	±100	-			
(1206)	0.66	70	125	500	1000	±5	1 to 10M (E24)	R<10Ω ∶−100 to +600 10Ω≤R ∶±200	-			
ERJPM8 (1206)	0.66	70	125	500	1000	±1	1.02M to 10M (E24, E96)	±100				
ERJP14	0.50	70		200	400	±0.5, ±1	10 to 1M (E24, E96)	±100				
(1210) 0.50	50 70	70	70 -	- 200	400 -	±5	1 to 1M (E24)	R<10Ω ∶ −100 to +600 10Ω≤R ∶ ±200				

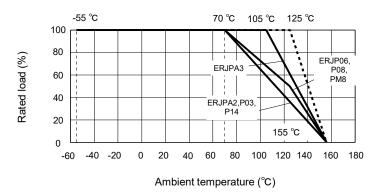
*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: If there is a doubt whether the rated ambient temperature or the rated terminal part temperature is used, give priority to the rated terminal part temperature.

41

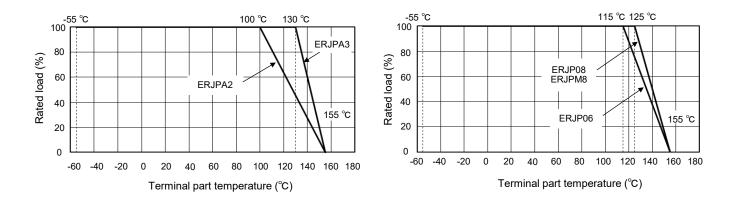
*3: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.

*4: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

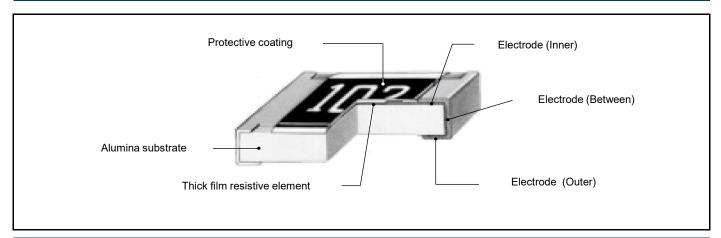

Ratings

Power derating curve

•For resistors operated in ambient rated ambient temperature, power rating shall be derated in accordance with the figure below.

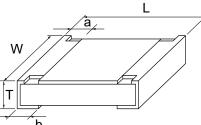

In addition, please use under the condition that the product temperature is below the upper category temperature.

% When the temperature of ERJP14 is 155 $^{\circ}$ C or less, the derating start temperature can be changed to 125 $^{\circ}$ C. (See the dotted line)

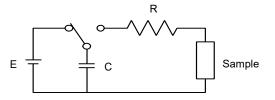


•For resistors operated in ambient rated terminal part temperature, power rating shall be derated in accordance with the figure below.

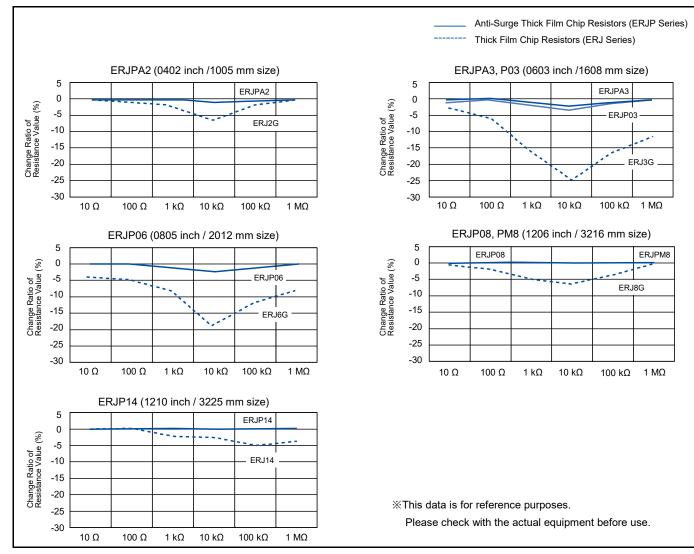
In addition, please use under the condition that the product temperature is below the upper category temperature.



Construction


Anti-Surge Thick Film Chip Resistors

Dimensions (not to scale)



	b						
Part No.	Dimensions						
Fait NO.	L	W	а	b	Т	 (Reference) (g/1000 pcs) 	
ERJPA2	1.00±0.05	0.50±0.05	0.20±0.15	0.25±0.10	0.35±0.05	0.8	
ERJPA3	1.60±0.15	0.80+0.15/-0.05	0.15+0.15/-0.10	0.25±0.10	0.45±0.10	2	
ERJP03	1.60±0.15	0.80+0.15/-0.05	0.15+0.15/-0.10	0.30±0.15	0.45±0.10	2	
ERJP06	2.00±0.20	1.25±0.10	0.25±0.20	0.40±0.20	0.60±0.10	4	
ERJP08,PM8	3.20+0.05/-0.20	1.60+0.05/-0.15	0.40±0.20	0.50±0.20	0.60±0.10	10	
ERJP14	3.20±0.20	2.50±0.20	0.35±0.20	0.50±0.20	0.60±0.10	16	

ESD Characteristic

Size (inch)	0402	0603, 0805, 1206, 1210
R	1.5 kΩ	R=0 Ω (≤1.5 kΩ) / 150 Ω > 1.5 kΩ)
С	100 pF	150 pF
E	±1 kV	±3 kV

Anti-Surge Thick Film Chip Resistors

Rated ambient temperature or rated terminal part temperature,

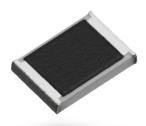
Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

Performance		
Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 ℃ / +155 ℃ (ERJPA2 : +125 ℃)
Overload	±2 % Only when it is ERJP03 (D), P14 (D) : ±0.5 %	ERJP06 : Rated voltag× 1.77, 5 s ERJPA2, ERJPA3, ERJP08, ERJPM8 : Rated voltag× 2.0, 5 s ERJP03, ERJP14 : Rated voltag× 2.5, 5 s
Resistance to soldering heat	D:±0.5 %, F, J:±1 %	270 °C, 10 s
Rapid change of temperature	±1 %	–55 ℃ (30min.) / +155 ℃ (ERJPA2 : +125 ℃) (30min.), 100 cycles
High temperature exposure	±1 %	+155 ℃, 1000 h
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity 1 (Applicable to rated ambient temperature-regulated products)	±3 % Only when it is ERJP03 (D), P14 (D) : ±1 %	60 ℃, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Load life in humidity 2 (Applicable to rated ambient temperature-regulated products)	±3 %	85 °C, 85 %RH, Rated power 10%, Continuously power, 1000 h
Durability at rated	±3 %	Rated ambient temperature or rated terminal part temperature

Only when it is ERJP03 (D),

P14 (D) : ±1 %

ambient

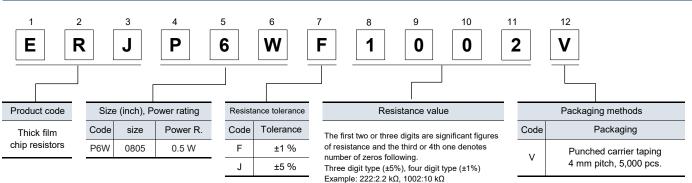

temperature or rated

terminal part temperature

INDUSTRY

This series is not a recommended product. Not recommended for new design.

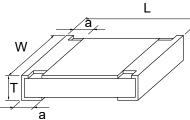
Anti-Surge Thick Film Chip Resistors (Double-sided resistive elements structure)


ERJ P W type

ERJ P6W series

Features

- ESD surge characteristics superior to standard metal film resistors
- Metal glaze thick film resistive element and three layers of electrodes
- Suitable for both reflow and flow soldering
- High power
- High pulse characteristics
- : 0.50 W, 2012(0805) size(ERJP6W)
- : 1.5 times higher than 0805 inch size Anti-Surge thick film chip resistors (ERJP06)
- Reference standards
- : IEC 60115-8、JIS C 5201-8、EIAJ RC-2134B
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.


Explanation of part numbers

Construction

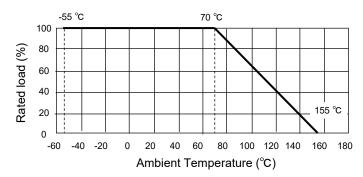
	Protective coatin —		Electrode (Inner)
		7	Electrode (Between)
Alumina substrate	-		Electrode (Outer)
Tr	ick film resistive element	Bottom s	ide element

Dimensions in mm (not to scale)

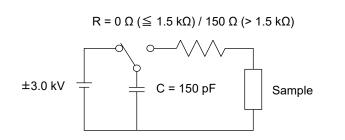
		-			Unit : mm			
Type	Dimensions							
Туре	L	W	а	Т	(g/1000 pcs)			
ERJP6W (0805)	2.00±0.20	1.25±0.20	0.35±0.20	0.65±0.10	6			

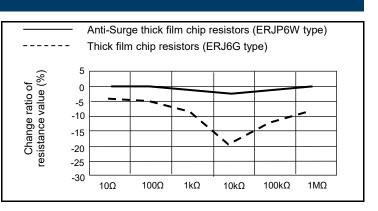
Anti-Surge Thick Film Chip Resistors (Double-sided resistive elements structure)

Ratings							
Part No. (inch size)	Power rating ^{*1} (70 ℃) (W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3}	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (°C)
ERJP6W	ERJP6W 0.5 150		200 -	± 1	10 to 1 M (E24,E96)	± 200	
(0805) 0.5	0.5	0.5 150	200	± 5	1 to 1 M	R < 10 Ω : –100 to +600	-55 10 + 155
				τo	(E24)	10 Ω < R : ±200	-

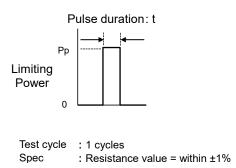

*1: Use it on the condition that the case temperature is below 155 $^{\circ}\!\!\!C.$

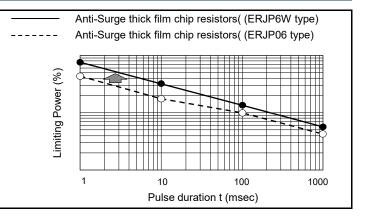
*2: Overload (Short-time Overload) test voltage (SOTV) shall be determined from SOTV=2.5 × Power rating or max. Over load voltage listed above whichever less.


*3: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=/Power Rating × Resistance Values, or Limiting Element Voltage listed above, whichever less.

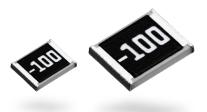

Power derating curve

For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the fi gure on the right.


ESD Characteristic

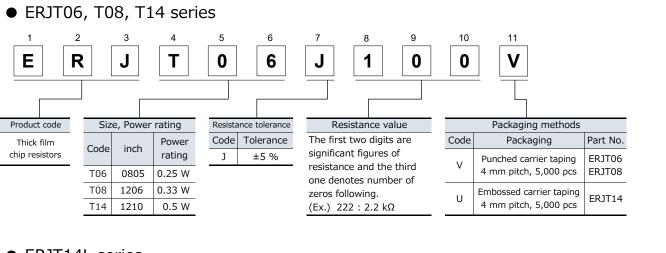


Limiting power curve


• In rush pulse Characteristic

INDUSTRY

Anti-Pulse Thick Film Chip Resistors



ERJ T type ERJ T06, T08, T14 series ERJ T14L series


Features

- Anti-Pulse characteristics
 High pulse characteristics achieved by the optimized trimming specifications (ERJT06, T08, T14)
- Further high pulse characteristics achieved by trimming-less specifications (ERJT14L)
- High reliability : Metal glaze thick film resistive element and three layers of electrodes
- Suitable for both reflow and flow soldering
- High power 0.25 W : 0805 inch /2012 mm size(ERJT06)
 - 0.33 W : 1206 inch /3216 mm size(ERJT08)
 - 0.50 W : 1210 inch /3225 mm size(ERJT14, ERJT14L)
- Reference standard : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C
- AEC-Q200 compliant
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

ERJT14L series

45

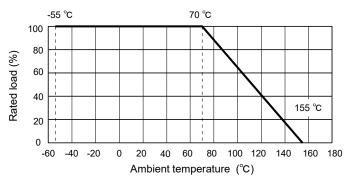
 $\boldsymbol{*}$ Please contact us for 0805 (inch) and 1206 (inch) size trimming-less types.

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

Anti-Pulse Thick Film Chip Resistors

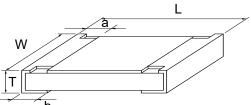
Ratings

Part No. (inch size)	Power rating ^{*1} (70 ℃)(W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
ERJT06	0.25	150	200	±5	1 to 1 M (E24)	R<10 Ω ∶ −100 to +600 10 Ω≤R<33 Ω ∶ ±300		
(0805)						33 Ω≤R ∶±200		
ERJT08	0.33	200	400	±5	1 to 1 M (E24)	R<10 Ω : -100 to +600		
(1206)	0.33	200	400	ID	110 TM (E24)	10 Ω≤R ∶±200	-55 to +155	Grade 0
ERJT14	0.50	200	400	±5	1 to 1 M (E24)	R<10 Ω : -100 to +600		
(1210)	0.50	200	400	±0	5 ITOIM (E24)	10 Ω≤R ∶±200		
ERJT14L	0.50	200	400	±10	1 to 1 M (E12)	R<10 Ω : -100 to +600		
(1210)	0.30	200	400	±20	1 to 1 M (F12)	10 Ω≤R ∶±200		


*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.

*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.


Power derating curve

For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.

Construction Protective coating Flectrode (Inner) Electrode (Between) Alumina substrate Thick film resistive element Electrode (Outer)

Dimensions (not to scale)

	b							
Devit Nie	Dimensions							
Part No.		W	а	b	Т	(Reference) (g/1000 pcs)		
ERJT06	2.00±0.20	1.25±0.10	0.25±0.20	0.40±0.20	0.60±0.10	4		
ERJT08	3.20+0.05/-0.20	1.60+0.05/-0.15	0.40±0.20	0.50±0.20	0.60±0.10	10		
ERJT14 ERJT14L	3.20±0.20	2.50±0.20	0.35±0.20	0.50±0.20	0.60±0.10	16		

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

Performance

Performance		
Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.+25 ℃ / +155 ℃	
Overload	±2 %	Rated voltage× 2.5, 5 s
Resistance to soldering heat	±1 %	270 ℃±3 ℃, 10 s ±1 s
Rapid change of temperature		
High temperature exposure	±1 %	+155 ℃, 1000 h
Damp heat, Steady state ±1 % 60 °C ±2 °C, 90 % to 95 %		60 ℃ ±2 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity ±3 % 60 °C ±2 °C, 90 % to 95 %RH, Rated voltage , 1.5 h ON / 0.5 h OFF cycle, 1000 h		
Endurance at 70℃	±3 %	70 ℃ ±2 ℃,Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

INDUSTRY

Anti-Sulfurated Thick Film Chip Resistors

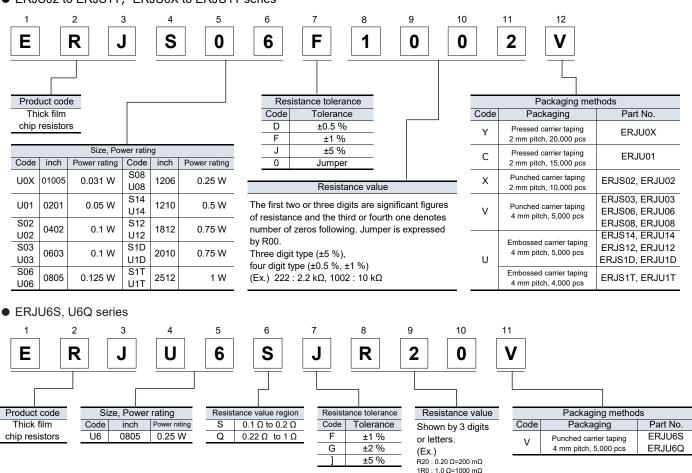
ERJ S type (Au-based inner electrode type)

ERJ S02, S03, S06, S08, S14 series

ERJ S12, S1D, S1T series

ERJ U type (Ag-Pd-based inner electrode type)

ERJ U0X, U01, U02, U03, U06, U08, U14 series ERJ U12. U1D. U1T. U6S. U6Q series



Features

- High resistance to sulfurization achieved by adopting an Au-based inner electrode (Series ERJS) and Ag-Pd-based inner electrode (Series ERJU)
- : Metal glaze thick film resistive element and three layers of electrodes High reliability
- Suitable for both reflow and flow soldering
- : ERJU6S, U6Q series : 0.1 Ω to 1 Ω • Low resistance type
- : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C Reference standard
- AEC-Q200 compliant (except ERJU0X, ERJU01)
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

ERJS02 to ERJS1T, ERJU0X to ERJU1T series

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use Design and specifications are each subject to change mutual nearest interest of the specification of the specifica

Anti-Sulfurated Thick Film Chip Resistors

Rating	S								
Part No. (inch size)	Power rating ^{*1} (70 ℃)(W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Resistance tolerance (%)	rar	stance nge Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (°C)	AEC- Q200 Grade
ERJU0X (01005) ERJU01	0.031	15	30 50	±1 ±5 ±1	10 to 1 M 1 to 1 M 10 to 1 M	(E24, E96) (E24) (E24, E96)	$ \begin{array}{r} R{<}10\ \Omega\ :-100\ to\ +600 \\ 10\ \Omega{\leq}R{<}100\ \Omega\ :\ \pm300 \\ 100\ \Omega{\leq}R\ :\ \pm200 \\ R{<}10\ \Omega\ :-100\ to\ +600 \end{array} $	55 to +125	-
(0201) ERJS02 ERJU02 (0402)	0.1	50	100	±5 ±0.5, ±1 ±5	1 to 1 M 1 to 1 M 1 to 3.3 M	(E24) (E24, E96) (E24)	10 Ω to 1 MΩ :±200 1 MΩ <r +150<="" :400="" td="" to=""><td></td><td></td></r>		
ERJS03 ERJU03 (0603)	0.1	75	150	±0.5, ±1 ±5	1 to 1 M 1 to 10 M	(E24, E96) (E24)			
ERJS06 ERJU06 (0805)	0.125	150	200	±0.5, ±1 ±5	1 to 1 M 1 to 10 M	(E24, E96) (E24)			
ERJS08 ERJU08 (1206)	0.25	200	400	±0.5, ±1 ±5	1 to 1 M 1 to 10 M	(E24, E96) (E24)	R<10 Ω :–100 to +600	-55 to +155	Grade 0
ERJS14 ERJU14 (1210)	0.5	200	400	±0.5, ±1 ±5	1 to 1 M 1 to 10 M	(E24, E96) (E24)	10 Ω to 1 MΩ :±200 (± 5 %) :±100 (±0.5 %, ±1 %)		
ERJS12 ERJU12 (1812)	0.75	200	500	±0.5, ±1 ±5	1 to 1 M 1 to 10 M	(E24, E96) (E24)	1 MΩ <r +150<="" td="" to="" –400="" ∶=""><td></td><td></td></r>		
ERJS1D ERJU1D (2010)	0.75	200	500	±0.5, ±1 ±5	1 to 1 M 1 to 10 M	(E24, E96) (E24)			
ERJS1T ERJU1T (2512)	1.0	200	500	±0.5, ±1 ±5	1 to 1 M 1 to 10 M	(E24, E96) (E24)			

*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=./Power Rating × Resistance Value,

or Limiting Element Voltage listed above, whichever less.

*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

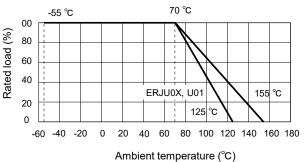
[Low resistance type]

Part No. (inch size)	Power rating ^{*1} (70 ℃)(W)	Resistance tolerance (%)	Resistance range (Ω)		T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
ERJU6S (0805)	0.25	±1, ±2, ±5	0.1 to 0.2	(E24)	0 to +150	–55 to +155	Grade 0
ERJU6Q (0805)	0.25	11, 12, 15	0.22 to 1	(E24)	0 10 + 150	-55 10 + 155	Grade 0

*1: Use it on the condition that the case temperature is below the upper category temperature.

• Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=/Power Rating × Resistance Value.

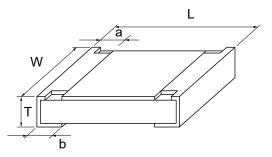
Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCW.


[For jumper]

Ti ol jampolj			
Part No.	Resistance	Rated current	Maximum overload current ^{*1}
ERJU0X		0.5 A	1 A
ERJU01		0.5 A	
ERJS02,ERJU02		1 A	2 A
ERJS03,ERJU03	- 100 mΩ or less	IA	2 7
ERJS06,ERJU06			
ERJS08,ERJU06	100 mg of less		
ERJS14,ERJU14		2 A	4 A
ERJS12,ERJU12	-	28	4 A
ERJS1D,ERJU1D			
ERJS1T,ERJU1T			

*1: Overload test current

Power derating curve


For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure below.

Anti-Sulfurated Thick Film Chip Resistors

Construction Protective coating Electrode (Inner) Alumina substrate Au-based : ERJS Type Ag-Pd-based : ERJU Type Electrode (Between) 72/ *Value markings color ERJS Type : Blue Electrode (Outer) Thick film resistive element ERJU Type : Red

Dimensions (not to scale)

Unit : mm

Part No.		Dimensions						
Part NO.	L	W	а	b	Т	(Reference) (g/1000 pcs)		
ERJU0X	0.40±0.02	0.20±0.02	0.10±0.03	0.10±0.03	0.13±0.02	0.04		
ERJU01	0.60±0.03	0.30±0.03	0.10±0.05	0.15±0.05	0.23±0.03	0.15		
ERJS02 ERJU02	1.00±0.05	0.50±0.05	0.20±0.10	0.25±0.10	0.35±0.05	0.8		
ERJS03 ERJU03	1.60±0.15	0.80+0.15/-0.05	0.30±0.20	0.30±0.15	0.45±0.10	2		
ERJS06 ERJU06	2.00±0.20	1.25±0.10	0.40±0.20	0.40±0.20	0.60±0.10	4		
ERJU6	2.00±0.20	1.25±0.10	0.45±0.20	0.45±0.20	0.55±0.10	6		
ERJS08 ERJU08	3.20+0.05/-0.20	1.60+0.05/-0.15	0.50±0.20	0.50±0.20	0.60±0.10	10		
ERJS14 ERJU14	3.20±0.20	2.50±0.20	0.50±0.20	0.50±0.20	0.60±0.10	16		
ERJS12 ERJU12	4.50±0.20	3.20±0.20	0.50±0.20	0.50±0.20	0.60±0.10	27		
ERJS1D ERJU1D	5.00±0.20	2.50±0.20	0.60±0.20	0.60±0.20	0.60±0.10	27		
ERJS1T ERJU1T	6.40±0.20	3.20±0.20	0.65±0.20	0.60±0.20	0.60±0.10	45		

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to change without notice, not leave, Should a safety concern arise regarding this product, please be sure to contact us immediately. 50

Anti-Sulfurated Thick Film Chip Resistors

Performance

• ERJS02 to ERJS1T, ERJU0X to ERJU1T series

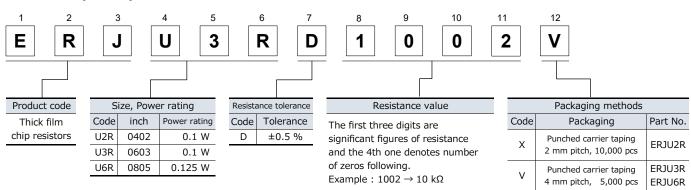
Test item	Performance re	equirements ⊿R	Test conditions	
restitem	Resistor type	Jumper type		
Resistance	Within specified tolerance	100 m Ω or less	20 °C	
T. C. R.	Within Specified T. C. R.	200 mΩ or less +25 °C / +155 °C (ERJU0X,U01 : +25 °C / +7		
Overload	±2 %	100 mΩ or lessRated voltage × 2.5, 5 sJumper type : Max. overload current, 5		
Resistance to soldering heat	±1 %	100 m Ω or less	270 ℃, 10 s	
Rapid change of temperature	±1 %	100 m Ω or less	_55 ℃ (30min.)/+155 ℃ (ERJU0X,U01 : +125 ℃) (30min.), 100 cycles	
High temperature exposure	±1 %	100 m Ω or less	+155 ℃ (ERJU0X,U01 : +125 ℃), 1000 h	
Damp heat, Steady state	±1 %	100 m Ω or less	60 ℃, 90 % to 95 %RH, 1000 h	
Load life in humidity	±3 %	100 m Ω or less	60 ℃, 90 % to 95 %RH, Rated voltage (Jumper type : Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h	
Endurance at 70 °C +3 % 100 mQ or less 70 °C, Rated v		70 ℃, Rated voltage (Jumper type : Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h		

• ERJU6S, U6Q series

Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 ℃
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C
Overload	±1 %	Rated voltage × 2.5, 5 s
Resistance to soldering heat	±1 %	270 °C, 10 s
Rapid change of temperature	±1 %	–55 ℃ (30 min.) / +125 ℃ (30min.), 100 cycles
High temperature exposure	±1 %	+155 ℃, 1000 h
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70 ℃	±3 %	70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

INDUSTRY

Anti-Sulfurated Thick Film Chip Resistors (Precision Type)


ERJ U□R type (Ag-Pd-based inner electrode type) ERJ U2R, U3R, U6R series

Features

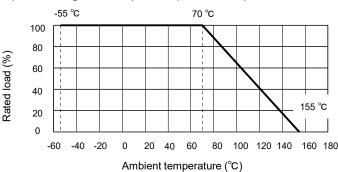
- High resistance to sulfurization achieved by adopting an Ag-Pd-based inner electrode.
- High precision : Resistance tolerance : $\pm 0.5 \%$ TCR : $\pm 50 \times 10^{-6}$ /K
- High reliability : Metal glaze thick film resistive element and three layers of electrodes.
- Suitable for both reflow and flow soldering.
- Reference standard : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C
- AEC-Q200 compliant
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

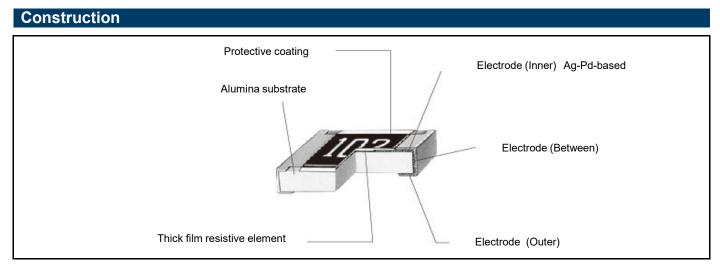
ERJU2R, U3R, U6R series

Ratings

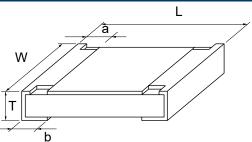
Part No. (inch size)	Power rating ^{*1} (70 °C) (W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC- Q200 Grade
ERJU2R (0402)	0.1	50	100	±0.5	100 to 100 k (E24, E96)			
ERJU3R (0603)	0.1	75	150	±0.5	100 to 100 k (E24, E96)	±50	-55 to +155	Grade 0
ERJU6R (0805)	0.125	150	200	±0.5	100 to 100 k (E24, E96)			


*1 : Use it on the condition that the case temperature is below the upper category temperature.

*2 : Rated continuous working voltage (RCWV) shall be determined from RCWV=√Power rating × Resistance value, or limiting element voltage listed above, whichever less.


*3 : Overload test voltage (OTV) shall be determined from OTV = Specified magnification (refer to performance) × RCWV or maximum overload voltage listed above, whichever less. $-55 \degree c$ 70 °c

Power derating curve


For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.

Anti-Sulfurated Thick Film Chip Resistors (Precsion Type)

Dimensions (not to scale)

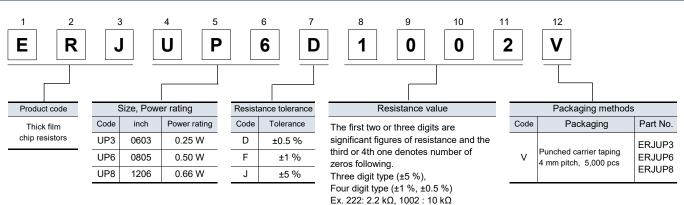
		Mass (Weight)						
Part No.		T	(Reference)					
	L	W	a	d	l	(g/1000 pcs)		
ERJU2R	1.00±0.05	0.50±0.05	0.20±0.10	0.25±0.10	0.35±0.05	0.8		
	1 00 0 15	0.00.0.4540.05	0.00.00	0.0010.45	0.45.0.40	-		
ERJU3R	1.60±0.15	0.80+0.15/-0.05	0.30±0.20	0.30±0.15	0.45±0.10	2		
ERJU6R	2.00±0.20	1.25±0.10	0.40±0.20	0.40±0.20	0.60±0.10	4		
						-		

Performance

Test Item	Performance requirements ⊿R	Test conditions	
Resistance	Within specified tolerance	20 °C	
T. C. R.	Within specified T. C. R.	+25 ℃ / +155 ℃	
Overload	±2 %	Rated voltage × 2.5, 5 s	
Resistance to soldering heat	±1 %	270 ℃, 10 s	
Rapid change of temperature	±1 %	–55 ℃ (30 min.) / +155 ℃ (30 min.), 100 cycles	
High temperature exposure	±1 %	+155 ℃, 1000 h	
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h	
Load life in humidity	in humidity ±2 % 60 °C, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h		
Endurance at 70 ℃	℃ ±2 % 70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h		

INDUSTRY

Anti-Sulfurated Thick Film Chip Resistors (Anti-Surge Type)



ERJ UP type ERJ UP3, UP6, UP8 series

Features

- High resistance to sulfurization achieved by adopting Anti-Sulfurated electrode material (Ag-Pd-based inner electrode) and structure
- ESD surge characteristics superior to standard metal film resistors
- High reliability : Metal glaze thick film resistive element and three layers of electrodes
- Suitable for both reflow and flow soldering
- High power
 0.25 W : 0603 inch / 1608 mm size (ERJUP3)
 0.50 W : 0805 inch / 2012 mm size (ERJUP6)
 - 0.66 W : 1206 inch / 3216 mm size (ERJUP8)
 - ndard : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C
- Reference standard
- AEC-Q200 compliant
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

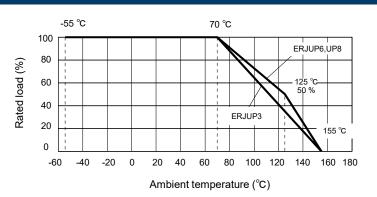
Explanation of part numbers

Ratings

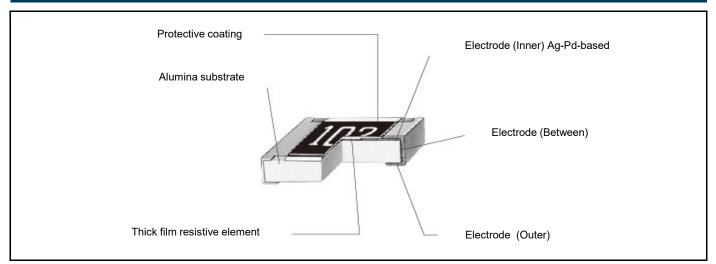
Part No. (inch size)	Power rating*1 (70 ℃) (W)	Limiting element voltage*2 (V)	Maximum overload voltage*3 (V)	Resistance tolerance (%)	Resis rar ۱	ige	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
ERJUP3	0.25	150	200	±0.5, ±1	10 to 1 M	(E24, E96)	±100		
(0603)	0.25	150	200	±5	1 to 1.5 M	(E24)	±200	-	
		400	600	±0.5, ±1	10 to 1 M	(E24, E96)	±100		
ERJUP6 (0805)	0.50			±5	1 to 3.3 M	M (E24)	R<10 Ω : -100 to +600	–55 to +155	Grade 0
(0000)				10			10 Ω≤R ∶±200	-33 10 +133	Glade 0
				±0.5, ±1	10 to 1 M	(E24, E96)	±100		
ERJUP8 (1206)	ERJUP8 0.66	500	1000	±5	1 to 10 M	(E24)	R<10 Ω : -100 to +600		
(1200)				10		(∟24)	10 Ω≤R ∶±200		

*1: Use it on the condition that the case temperature is below the upper category temperature.

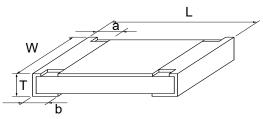
*2: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.


*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

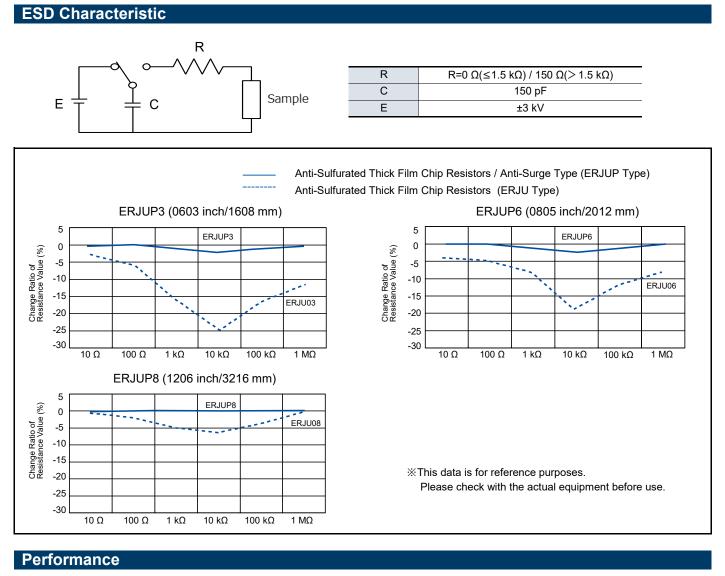
Anti-Sulfurated Thick Film Chip Resistors (Anti-Surge Type)


Ratings

Power derating curve


For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.

Construction



Dimensions in mm (not to scale)

Unit : mm Mass (Weight) Dimensions Part No. (Reference) L W Т а b (g/1000 pcs) ERJUP3 1.60±0.15 0.80+0.15/-0.05 0.15+0.15/-0.10 0.25±0.10 0.45±0.10 2 1.25±0.10 0.60±0.10 ERJUP6 2.00±0.20 0.25±0.20 0.40±0.20 4 ERJUP8 3.20+0.05/-0.20 1.6+0.05/-0.15 0.40±0.20 0.50±0.20 0.60±0.10 10

Anti-Sulfurated Thick Film Chip Resistors (Anti-Surge Type)

Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 ℃ / +155 ℃
Overland	10.0/	ERJUP6 : Rated voltag x 1.77, 5 s
Overload	±2 %	ERJUP3, ERJUP8 : Rated voltag x 2.0, 5 s
Resistance to	D:±0.5%	270 ℃, 10 s
soldering heat	F, J:±1%	270 C, 108
Rapid change of temperature	±1 %	–55 ℃ (30 min.) / +155 ℃ (30 min.), 100 cycles
High temperature exposure	±1 %	+155 ℃, 1000 h
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70 ℃	±3 %	70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

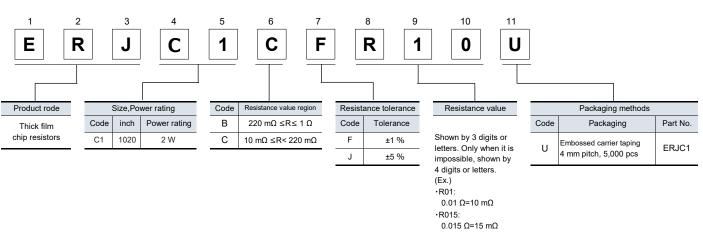
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to change without notice, the subject to change without notice, the subject to contact us immediately. Should a safety concern arise regarding this product, please be sure to contact us immediately. 56

INDUSTRY

Anti-Sulfurated High Power Chip Resistors (Wide Terminal Type)

ERJ C type

ERJ C1 series


Features

- High resistance to sulfurization achieved by adopting Anti-Sulfurated electrode material (Ag-Pd-based inner electrode) and structure (Covered electrode)
- High solder-joint reliability by wide terminal construction
- Excellent heat dissipation characteristics by wide terminal construction
- AEC-Q200 compliant
- RoHS compliant

Recommended applications

- Motor control circuit of the industrial equipment
- Automotive electronic circuits including ECUs (Electrical control unit), anti-lock breaking systems and air-bag systems
- Current sensing for power supply circuits in a variety of equipment
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

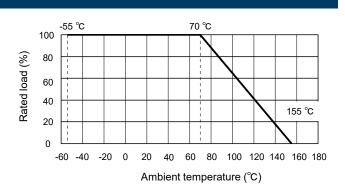
Explanation of part numbers

Ratings

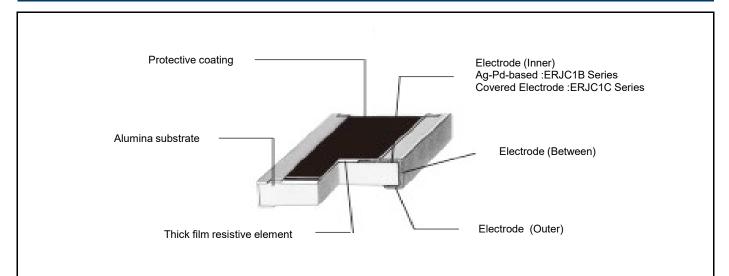
Part No. (inch size)	Power rating ^{*1} (70 ℃) (W)	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
ERJC1 (1020)	2	±1	10 m to 1 (E24)	$\begin{array}{l} 10 \ m\Omega \leq R < 22 \ m\Omega & : \ 0 \ to \ +350 \\ 22 \ m\Omega \leq R < 47 \ m\Omega & : \ 0 \ to \ +200 \\ 47 \ m\Omega \leq R < 100 \ m\Omega & : \ 0 \ to \ +150 \\ 100 \ m\Omega \leq R \leq 1 \ \Omega & : \ \pm100 \end{array}$	–55 to +155	Grade 0
(1020)	2	±5		$\begin{array}{l} 10 \ m\Omega \leq R < 22 \ m\Omega & : \ 0 \ to \ +350 \\ 22 \ m\Omega \leq R < 100 \ m\Omega & : \ 0 \ to \ +200 \\ 100 \ m\Omega \leq R \leq 1 \ \Omega & : \ \pm200 \end{array}$		

*1: Use it on the condition that the case temperature is below the upper category temperature.

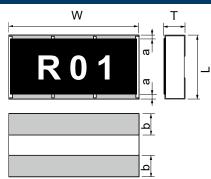
• Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Value.


Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCW.

Anti-Sulfurated High Power Chip Resistors (Wide Terminal Type)


Ratings

Power derating curve


For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.

Construction

Dimensions (not to scale)

						Unit : mm			
Part No.	Dimensions								
Fait NO.	L	W	а	b	Т	(Reference) (g/1000 pcs)			
ERJC1B	- 2.50±0.20	5.00±0.20	0.35±0.20	0.90±0.20	0.55±0.20	27			
ERJC1C	2.3010.20	J.00±0.20	0.60±0.20	0.9010.20	0.3310.20	21			

Circuit configuration

ERJC1 series	

. 58

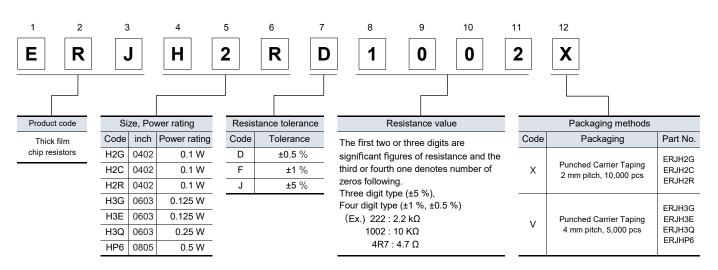
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

Anti-Sulfurated High Power Chip Resistors (Wide Terminal Type)

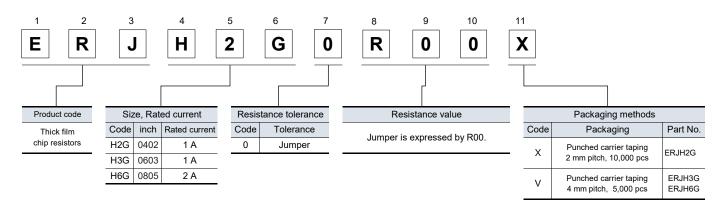
Performance		
Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 ℃ / +125 ℃
Overload	±2 %	Rated voltage × 2.0, 5 s
Resistance to soldering heat	±1 %	270 °C, 10 s
Rapid change of temperature	±2 %	–55 ℃ (30 min.) / +125 ℃ (30 min.), 1000 cycles
High temperature exposure	±1 %	+155 ℃, 1000 h
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±3 %	60 °C, 90 % to 95 %RH, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70 ℃	±3 %	70 ℃, Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

INDUSTRY

High Temperature Thick Film Chip Resistor (Automotive Grade)


ERJH type ERJ H2G, H2C, H2R, H3G series ERJ H3E, H3Q, H6G, HP6 series

Features


- High reliability : Metal glaze thick film resistive element and high temperature of electrodes structure
- ullet Achieve maximum category temperature 175 $^\circ\!\!C$ and rated category temperature 105 $^\circ\!\!C$
- Compatible with placement machines : Taping packaging available
- Suitable for both reflow and flow soldering
- Reference standard : IEC 60115-8, JIS C 5201-8, JEITA RC-2134C
- AEC-Q200 compliant
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

• ERJH2G, H2C, H2R, H3G, H3E, H3Q, HP6 series : ±0.5 %, ±1 %, ±5 %

ERJH2G, H3G, H6G series : Jumper

High Temperature Thick Film Chip Resistor (Automotive Grade)

Ratings

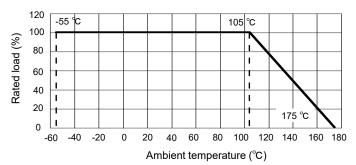
[For R	esistor]
--------	----------

Part No. (inch size)	Power rating*1 (105 ℃) (W)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	Resistance tolerance (%)	Resistance range (Ω)		T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
ERJH2G (0402)	0.1	50	100	±5	1 to 300 k	(E24)	R < 10Ω : −100 to +600 10Ω ≤ R : ±200		
ERJH2C (0402)	0.1	50	100	±1	1 to 9.76	(E24,E96)	-100 to +600		
ERJH2R (0402)	0.1	50	100	±0.5,±1	10 to 300 k	(E24,E96)	±100		
ERJH3G (0603)	0.125	75	150	±5	1 to 300 k	(E24)	R < 10Ω : −100 to +600 10Ω ≤ R : ±200		
ERJH3E (0603)	0.125	75	150	±0.5,±1	10 to 300 k	(E24,E96)	±100		Orrende O
ERJH3Q	0.25			±0.5,±1	1 to 9.76	(E24,E96)	±200	55 to +175	Grade 0
(0603)	0.25	-	-	±5	1 to 9.1	(E24)	±200		
	0.5	400	600	±0.5	10 to 300 k	(E24,E96)	R < 33Ω : ±300		
	0.5	400	000	10.5	10 to 500 k	(L24,L30)	$33\Omega \leq R : \pm 100$		
							R < 10Ω : –100 to +600		
ERJHP6	0.5	400	600	±1	1 to 300 k	(E24,E96)	$10\Omega \leq R < 33\Omega : \pm 300$		
(0805)							$33\Omega \leq R : \pm 100$		
							R < 10Ω : –100 to +600		
	0.5	400 600		±5	1 to 300 k	(E24)	10Ω ≤R < 33Ω ∶ ±300		
							$33\Omega \leq R$: ±100		

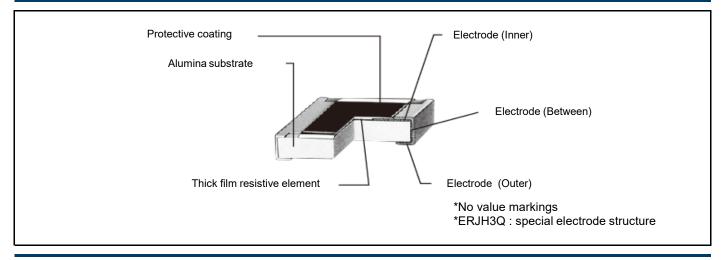
*1: Use it on the condition that the case temperature is below the upper category temperature.

*2: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=/Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.

*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

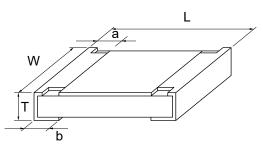

[For Jumper]

_			
Part No. (inch size)	Resistance	Rated current	Maximum overload current ^{*1}
ERJH2G (0402)		1 A	2 A
ERJH3G (0603)	50 m Ω or less	1 A	2 A
ERJH6G (0805)		2 A	4 A


*1: Overload test current

Power derating curve

For resistors operated in ambient temperatures above 105 $^{\circ}$ C, power rating shall be derated in accordance with the figure below.



Construction

High Temperature Thick Film Chip Resistor (Automotive Grade)

Dimensions (not to scale)

						Unit : mm					
Part No.		Dimensions									
Fall NO.	L	W	а	b	Т	(Reference) (g/1000 pcs)					
ERJH2G	1.00±0.05	0.50±0.05	0.20±0.10	0.25±0.05	0.35±0.05	0.8					
ERJH2C	1.00±0.05	0.50±0.05	0.20±0.10	0.25±0.05	0.35±0.05	0.8					
ERJH2R	1.00±0.05	0.50±0.05	0.20±0.10	0.25±0.05	0.35±0.05	0.8					
ERJH3G	1.60±0.15	0.80+0.15/-0.05	0.30±0.20	0.30±0.15	0.45±0.10	2					
ERJH3E	1.60±0.15	0.80+0.15/-0.05	0.30±0.20	0.30±0.15	0.45±0.10	2					
ERJH3Q	1.60±0.15	0.80+0.15/-0.05	0.30±0.20	0.30±0.15	0.45±0.10	2					
ERJH6G	2.00±0.20	1.25±0.10	0.40±0.20	0.40±0.20	0.60±0.10	4					
ERJHP6	2.00±0.20	1.25±0.10	0.25±0.20	0.40±0.20	0.60±0.10	4					

Performance

Test item	Performance re	equirements ⊿R	- Test conditions	
restitem	Resistor type	Jumper type		
Resistance	Within specified tolerance	50 m Ω or less	20 °C	
T. C. R.	Within specified T. C. R.	50 m Ω or less	+25 °C / +175 °C	
Overload	±2 %	50 m Ω or less	ERJH2G, H2C, H2R, H3G, H3E, H3Q : Rated voltage× 2.5, 5 s ERJHP6 : Rated voltage× 1.77, 5 s Jumper type : Max. overload current, 5 s	
Resistance to soldering heat	±1 %	50 m Ω or less	270 ℃, 10 s	
Rapid change of temperature	±1 %	50 m Ω or less	–55 ℃ (30 min.) / +175 ℃ (30 min.), 1000 cycles	
High temperature exposure	±1 %	50 m Ω or less	+175 ℃, 1000 h	
Damp heat, Steady state	±1 %	50 m Ω or less	85 ℃, 85 %RH, 1000 h	
Load life in humidity	±3 %	50 m Ω or less	85 ℃, 85 %RH, Rated voltage (Jumper type :Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h	
Endurance at 105 $^\circ$ C	±3 %	50 m Ω or less	105 ℃, Rated voltage (Jumper type : Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h	

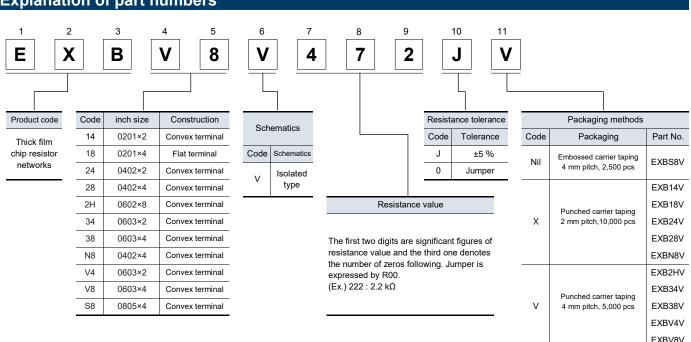
Design and specifications are each subject to change without notice, resulting the specification of the specificat Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

'anason

INDUSTRY

Chip Resistors Array

EXB type



EXB 14V, 18V, 24V, 28V, N8V, 2HV, series EXB 34V, V4V, 38V, V8V, S8V series

Features

High density

- 2 resistors in 0.8 mm × 0.6 mm size / 0302 inch size : EXB14V
- 4 resistors in 1.4 mm × 0.6 mm size / 0502 inch size : EXB18V
- 2 resistors in 1.0 mm × 1.0 mm size / 0404 inch size : EXB24V
- 4 resistors in 2.0 mm × 1.0 mm size / 0804 inch size : EXB28V, N8V
- 8 resistors in 3.8 mm × 1.6 mm size / 1506 inch size : EXB2HV
- 2 resistors in 1.6 mm × 1.6 mm size / 0606 inch size : EXB34V, V4V
- 4 resistors in 3.2 mm × 1.6 mm size / 1206 inch size : EXB38V, V8V
- 4 resistors in 5.1 mm × 2.2 mm size / 2009 inch size : EXBS8V
- Improvement of placement efficiency Placement efficiency of Chip Resistor Array is two, four or eight times of the flat type chip resistor
- : IEC 60115-9, JIS C 5201-9, EIAJ RC-2129 • Reference Standard
- AEC-Q200 compliant (EXB2, EXB3)
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

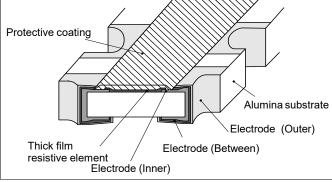
Chip Resistors Array

Ratings

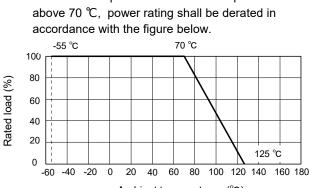
[For Resistor]

Part No. (inch size)	Power rating (70 ℃) (W/element)	Limiting element voltage ^{*1} (V)	Maximum overload voltage ^{*2} (V)	Resistance tolerance (%)	Resistance range (Ω)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (°C)	AEC-Q200 Grade
EXB14V (0201×2)	0.031	12.5	25	±5	10 to 1 M (E24)			
EXB18V (0201×4)	0.031 (0.1 W / package)	12.5	25	±5	10 to 1 M (E24)			-
EXB24V (0402×2)	0.063	50	100	±5	1 to 1 M (E24)			
EXB28V (0402×4)	0.063	50	100	±5	1 to 1 M (E24)			
EXB2HV (0602×8)	0.063 (0.25 W / package)	25	50	±5	10 to 1 M (E24)	R<10 Ω		Grade 1
EXB34V (0603×2)	0.063	50	100	±5	1 to 1 M (E24)	: -200 to +600 10 Ω to 1 MΩ	-55 to +125	
EXB38V (0603×4)	0.063	50	100	±5	1 to 1 M (E24)	: ±200		
EXBN8V (0402×4)	0.031	50	100	±5	10 to 1 M (E24)			
EXBV4V (0603×2)	0.063	50	100	±5	10 to 1 M (E24)			
EXBV8V (0603×4)	0.063	50	100	±5	10 to 1 M (E24)			-
EXBS8V (0805×4)	0.1	100	200	±5	10 to 1 M (E24)			

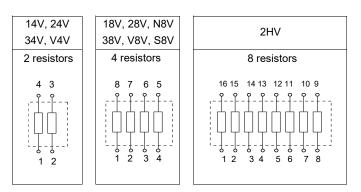
*1: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV= Verver Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.


*2: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

[For Jumper]

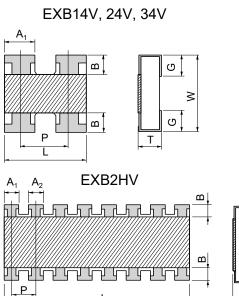

Part No.	Resistance	Rated current	Maximum overload current ^{*1}
EXB14V		0.5 A	1 A
EXB18V		0.5 A	1 A
EXB24V		1 A	2 A
EXB28V		1 A	2 A
EXB2HV		1 A	2 A
EXB34V	50 m Ω or less	1 A	2 A
EXB38V		1 A	2 A
EXBN8V		1 A	2 A
EXBV4V		1 A	2 A
EXBV8V		1 A	2 A
EXBS8V		2 A	4 A

*1: Overload test current


Power derating curve

For resistors operated in ambient temperatures

Ambient temperature (°C) Schematics


Isolated type

Chip Resistors Array

Dimensions (not to scale)

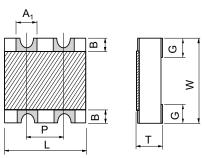
(1) Convex terminal type

EXB28V, 38V A₁ Б шţ П പ ≥ ш വ L Т Р

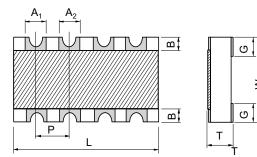
I Init · mm

									Unit . min
Part No.	Dimensions								
(inch size)	L	W	Т	A ₁	A ₂	В	Р	G	(Reference) (g/1000 pcs)
EXB14V (0603X2)	0.80±0.10	0.60±0.10	0.35±0.10	0.35±0.10		0.15±0.10	(0.50)	0.15±0.10	0.5
EXB24V (1005×2)	1.00±0.10	1.00±0.10	0.35±0.10	0.40±0.10		0.18±0.10	(0.65)	0.25±0.10	1.2
EXB28V (1005×4)	2.00±0.10	1.00±0.10	0.35±0.10	0.45±0.10	0.35±0.10	0.20±0.10	(0.50)	0.25±0.10	2.0
EXB2HV (1605×8)	3.80±0.10	1.60±0.10	0.45±0.10	0.35±0.10	0.35±0.10	0.30±0.10	(0.50)	0.30±0.10	9.0
EXB34V (1608×2)	1.60±0.20	1.60±0.15	0.50±0.10	0.65±0.15	_	0.30±0.20	(0.80)	0.30±0.20	3.5
EXB38V (1608×4)	3.20±0.20	1.60±0.15	0.50±0.10	0.65±0.15	0.45±0.15	0.30±0.20	(0.80)	0.35±0.20	7.0
									() Reference

υ

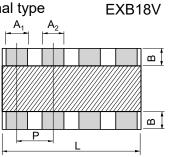

Ъ

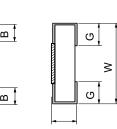
т


≥

(2) Concave terminal type

EXBN8V, V8V, S8V


									Unit : mm
Part No.				Dimer	nsions				Mass (Weight)
(inch size)	L	W	Т	A ₁	A ₂	В	Р	G	(Reference) (g/1000 pcs)
EXBN8V (1005×4)	2.00±0.10	1.00±0.10	0.45±0.10	0.30±0.10	0.30±0.10	0.20±0.15	(0.50)	0.30±0.15	3.0
EXBV4V (1608×2)	1.60 +0.20/-0.10	1.60 +0.20/-0.10	0.60±0.10	0.60±0.10	—	0.30±0.15	(0.80)	0.45±0.15	5.0
EXBV8V (1608×4)	3.20 +0.20/-0.10	1.60 +0.20/-0.10	0.60±0.10	0.60±0.10	0.60±0.10	0.30±0.15	(0.80)	0.45±0.15	10
EXBS8V (2012×4)	5.08 +0.20/-0.10	2.20 +0.20/-0.10	0.70±0.20	0.80±0.15	0.80±0.15	0.50±0.15	(1.27)	0.55±0.15	30
									() Reference


Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

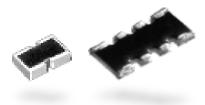
≥

Dimensions (not to scale)

(3) Flat terminal type

Unit : mm

Part No.		Dimensions							Mass (Weight) (Reference)
(inch size)	L	W	Т	A ₁	A ₂	В	Р	G	(g/1000 pcs)
EXB18V (0603×4)	1.40±0.10	0.60±0.10	0.35±0.10	0.20±0.10	0.20±0.10	0.10±0.10	(0.40)	0.20±0.10	1.0

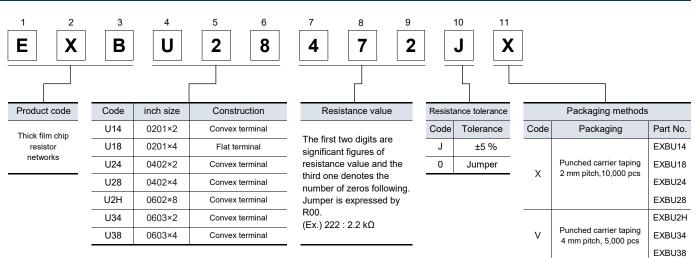

() Reference

Performance

Test Item	Performance requirements ⊿R	Test conditions	
Resistance	Within specified tolerance	20 ℃	
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C	
Overload	±2 %	Rated voltage x 2.5,5 s Jumper type:Max. overload current, 5 s	
Resistance to soldering heat	±1 %	270 ℃, 10 s	
Rapid change of temperature	±1 %	–55 ℃ (30 min.) / +155 ℃ (30 min.), 100 cycles	
High temperature exposure	±1 %	+125 ℃, 1000 h	
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h	
Load life in humidity	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage (Jumper type : Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h	
Endurance at 70 $^\circ$ C	±3 %	70 ℃, Rated voltage (Jumper type :Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h	

INDUSTRY

Anti-Sulfurated Chip Resistors Array


EXB type

EXB 14V, 18V, 24V, 28V, N8V, 2HV series EXB 34V, V4V, 38V, V8V, S8V series

Features

- High resistance to sulfurization achieved by adopting an Ag-Pd-based inner electrode
- High density
 - 2 resistors in 0.8 mm × 0.6 mm size / 0302 inch size : EXBU14
 - 4 resistors in 1.4 mm × 0.6 mm size / 0502 inch size : EXBU18
 - 2 resistors in 1.0 mm × 1.0 mm size / 0404 inch size : EXBU24
 - 4 resistors in 2.0 mm × 1.0 mm size / 0804 inch size : EXBU28
 - 8 resistors in 3.8 mm × 1.6 mm size / 1506 inch size : EXBU2H
 - 2 resistors in 1.6 mm × 1.6 mm size / 0606 inch size : EXBU34
 - 4 resistors in 3.2 mm × 1.6 mm size / 1206 inch size : EXBU38
- Improvement of placement efficiency Placement efficiency of chip resistor array is two, four or eight times of the flat type chip resistor
- : IEC 60115-9, JIS C 5201-9, EIAJ RC-2129 • Reference standard
- AEC-Q200 compliant (EXBU2, EXBU3)
- RoHS compliant
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

Explanation of part numbers

Anti-Sulfurated Chip Resistors Array

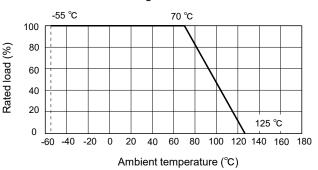
Ratings

[For Resistor]

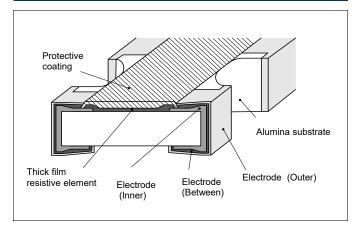
Part No. (inch size)	Power rating (70 ℃) (W/element)	Limiting element voltage ^{*1} (V)	Maximum overload voltage ^{*2} (V)	Resistance tolerance (%)	Resistar range (Ω)		T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
EXBU14 (0201×2)	0.031	12.5	25	±5	10 to 1 M	(E24)			
EXBU18 (0201×4)	0.031 (0.1 W / package)	12.5	25	±5	10 to 1 M	(E24)			-
EXBU24 (0402×2)	0.063	50	100	±5	1 to 1 M	(E24)	R<10 Ω : –200 to +600 10 Ω to 1 MΩ	-55 to +125	
EXBU28 (0402×4)	0.063	50	100	±5	1 to 1 M	(E24)			
EXBU2H (0602×8)	0.063 (0.25 W / package)	25	50	±5	10 to 1 M	(E24)	: ±200		Grade 1
EXBU34 (0603×2)	0.063	50	100	±5	1 to 1 M	(E24)			
EXBU38 (0603×4)	0.063	50	100	±5	1 to 1 M	(E24)			

*1: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=\/Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.

*2: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

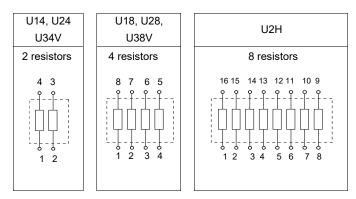

[For Jumper]

Part No.	Resistance	Rated current	Maximum overload current ^{*1}						
EXBU24									
EXBU28									
EXBU2H	100 m Ω or less	1 A	2 A						
EXBU34									
EXBU38									
*1. Ourseles	*4. Overlaged to star summark								


*1: Overload test current

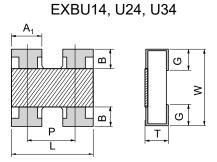
Power derating curve

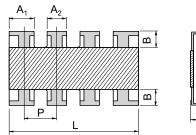
For resistors operated in ambient temperatures above 70°C, power rating shall be derated in accordance with the figure below.

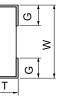


Construction

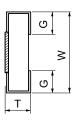
Schematics

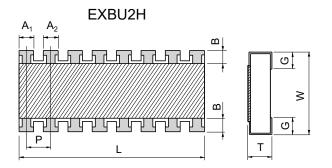

Isolated type


Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to change without nearest, sector, Should a safety concern arise regarding this product, please be sure to contact us immediately. 68


Anti-Sulfurated Chip Resistors Array

Dimensions (not to scale)




EXBU28, U38

EXBU18 A₁ A_2 шţ шţ P L

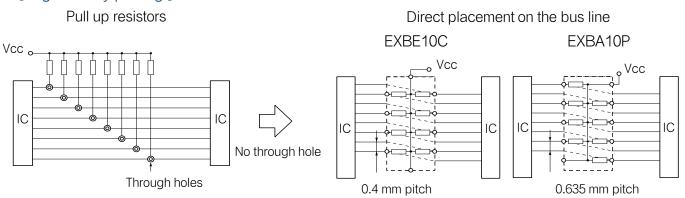
				Dimo	naiana				Unit : mm Mass (Weight)
Part No.			T	Dimei	nsions			r	(Reference)
(inch size)	L	W	Т	A ₁	A ₂	В	Р	G	(g/1000 pcs)
EXBU14 (0201X2)	0.80±0.10	0.60±0.10	0.35±0.10	0.35±0.10	_	0.15±0.10	(0.50)	0.15±0.10	0.5
EXBU18 (0201×4)	1.40±0.10	0.60±0.10	0.35±0.10	0.20±0.10	0.20±0.10	0.10±0.10	(0.40)	0.20±0.10	1.0
EXBU24 (0402×2)	1.00±0.10	1.00±0.10	0.35±0.10	0.40±0.10	_	0.18±0.10	(0.65)	0.25±0.10	1.2
EXBU28 (0402×4)	2.00±0.10	1.00±0.10	0.35±0.10	0.45±0.10	0.35±0.10	0.20±0.10	(0.50)	0.25±0.10	2.0
EXBU2H (0602×8)	3.80±0.10	1.60±0.10	0.45±0.10	0.35±0.10	0.35±0.10	0.30±0.10	(0.50)	0.30±0.10	9.0
EXBU34 (0603×2)	1.60±0.20	1.60±0.15	0.50±0.10	0.65±0.15	_	0.30±0.20	(0.80)	0.30±0.20	3.5
EXBU38 (0603×4)	3.20±0.20	1.60±0.15	0.50±0.10	0.65±0.15	0.45±0.15	0.30±0.20	(0.80)	0.35±0.20	7.0

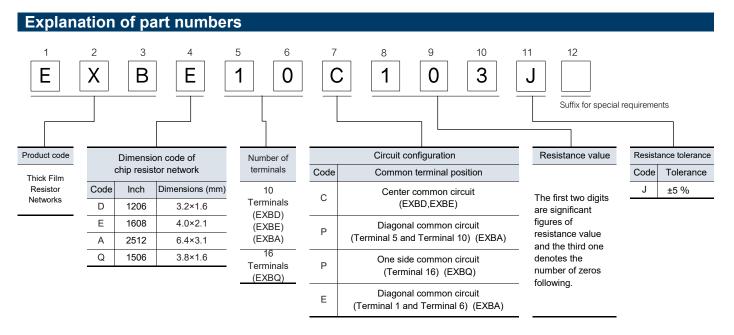
() Reference

erformance		
Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within Specified T. C. R.	+25 °C / +125 °C
Overload	±2 %	Rated voltage x 2.5,5 s Jumper type:Max. overload current,5 s
Resistance to soldering heat	±1 %	270 °C, 10 s
Rapid change of temperature	±1 %	–55 ℃ (30 min.) / +125 ℃ (30 min.),100 cycles
High temperature exposure	±1 %	+125 ℃, 1000 h
Damp heat, Steady state	±1 %	60 ℃, 90 % to 95 %RH, 1000 h
Load life in humidity	±3 %	60 ℃, 90 % to 95 %RH, Rated voltage (Jumper type : Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h
Endurance at 70℃	±3 %	70℃, Rated voltage (Jumper type : Rated current), 1.5 h ON / 0.5 h OFF cycle, 1000 h

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 69

Panasonic INDUSTRY


Chip Resistors Networks EXB type EXB D, E, A, Q series


Features

- High density placing for digital signal circuits
 - ·Bussed 8 or 15 resistors for pull up/down circuits
 - EXBD : 3.2 mm × 1.6 mm × 0.55 mm, 0.635 mm pitch
 - EXBE : 4.0 mm × 2.1 mm × 0.55 mm, 0.8 mm pitch
 - EXBA : 6.4 mm × 3.1 mm × 0.55 mm, 1.27 mm pitch
 - EXBQ : 3.8 mm × 1.6 mm × 0.45 mm, 0.5 mm pitch
 - •Available direct placing on the bus line by means of half pitch spacing without through-holes on PWB ("High density placing" is shown below)
- High speed mounting using conventional placing machine
- Reference Standard : IEC 60115-9, JIS C 5201-9, EIAJ RC-2130
- RoHS compliant

[High density placing]

As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

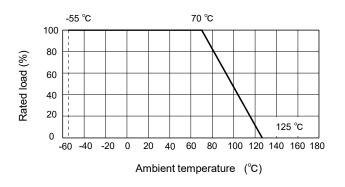
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

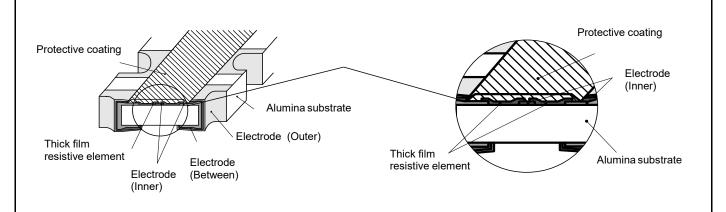
Chip Resistors Networks

Ratings

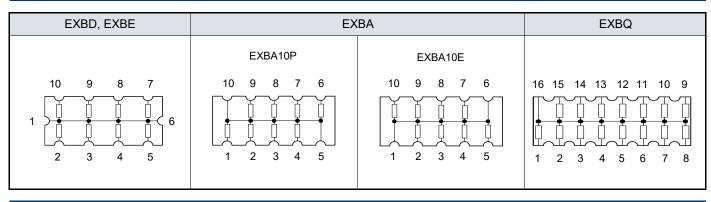
Part No. (inch size)	Resistance range (Ω)	Resistance tolerance (%)	Number of terminals	Number of resistors	Power rating ^{*1} (70 ℃) (W/element)	Limiting element voltage ^{*2} (V)	Maximum overload voltage ^{*3} (V)	T.C.R. (×10 ⁻⁶ /K)	Category temperature range (℃)	AEC-Q200 Grade
EXBD (1206)					0.05 / element	25	50	±200		
EXBE (1608)	47 to 1 M (E12)	+5	10 terminals	8 element	0.063 / element	25	50	±200	55 to +125	
EXBA (2512)		±5			0.063 / element	50	100	±200		-
EXBQ (1506)	100 to 470 k (E6)		16 terminals	15 element	0.025 / element	25	50	±200		


*1: Use it on the condition that the case temperature is below the upper category temperature.

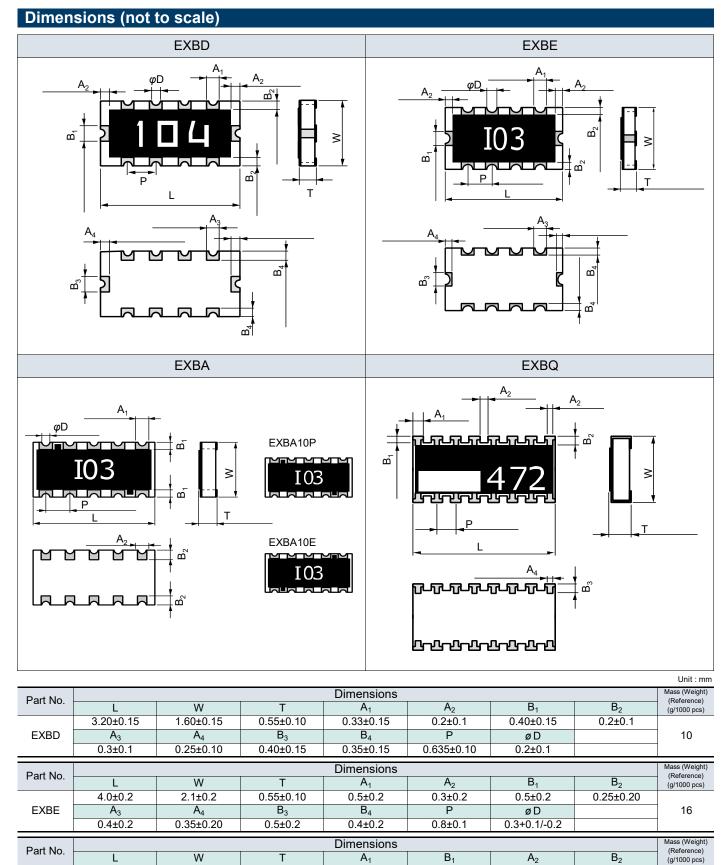
*2: Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=\Power Rating × Resistance Value, or Limiting Element Voltage listed above, whichever less.


*3: Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less.

Power derating curve


For resistors operated in ambient temperatures above 70 °C, power rating shall be derated in accordance with the figure on the right.

Construction (Example : EXBD)



Circuit configuration

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to charge managements for the specification of the

Chip Resistors Networks

Part No.	L	W	Т	A ₁	B ₁	A ₂	B ₂	 (Reference) (g/1000 pcs)
	6.4±0.2	3.1±0.2	0.55±0.10	0.7±0.2	0.3±0.2	0.5±0.2	0.5±0.20	
EXBA	Р	øD						40
	1.27±0.10	0.3+0.1/-0.2						
Part No.				Dimensions				Mass (Weight) (Reference)
Fait NO.	L	W	Т	A ₁	A ₂	A ₃	B ₁	(g/1000 pcs)
	3.8±0.2	1.6±0.2	0.45±0.10	0.3±0.1	0.2±0.1	0.15+0.15/-0.05	0.15+0.15/-0.05	
EXBQ	B ₂	A ₄	B ₃	Р				9
	0.25±0.15	0.15+0.20/-0.05	0.30±0.15	0.5±0.1				

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to change without router restort action in the specification of the spe

Chip Resistors Networks

Performance		
Test Item	Performance requirements ⊿R	Test conditions
Resistance	Within specified tolerance	20 °C
T. C. R.	Within specified T. C. R.	+25 °C / +125 °C
Overload	±3 %	Rated voltage x 2.5, 5 s
Resistance to soldering heat	±1 %	260 ℃ ±5 ℃, 5 s ±1 s
Rapid change of temperature	±2 %	–55 ℃ (30 min.) / +125 ℃ (30 min.),5 cycles
High temperature exposure	±3 %	+125 ℃, 100 h
Load life in humidity	±3 %	60 ℃±2 ℃, 90 % to 95 %RH, Rated power × 0.1, 1.5 h ON / 0.5 h OFF cycle, 500 h
Endurance at 70 ℃	±5 %	70 ℃±2 ℃,Rated voltage, 1.5 h ON / 0.5 h OFF cycle, 1000 h

Panasonic

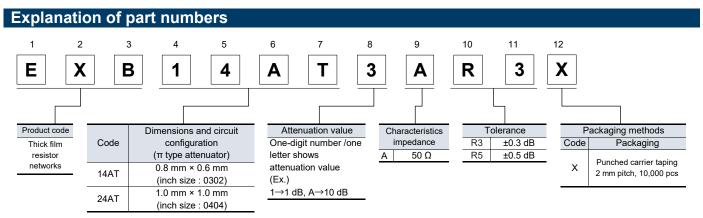
Chip Attenuator EXB type

EXB 14AT, 24AT series

Features

- Unbalanced π type attenuator circuit in one chip EXB14AT (0.8 mm×0.6 mm), EXB24AT (1.0 mm×1.0 mm)
- Reduced mounting area

EXB14AT : About 60 % smaller than the area of an attenuator circuit consisting of three 0603 chip resistors, almost equal to the area of three 0402 chip resistors

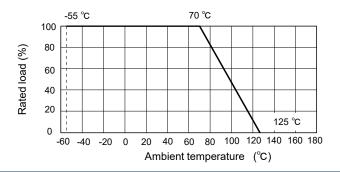

EXB24AT : About 50 % smaller than the area of an attenuator circuit consisting of three 1005 chip resistors, almost equal to the area of three 0603 chip resistors

- Mounting cost reduction : (Only 1 chip placed as compared to 3)
- Attenuation : 1 dB to 10 dB

RoHS compliant

Recommended applications

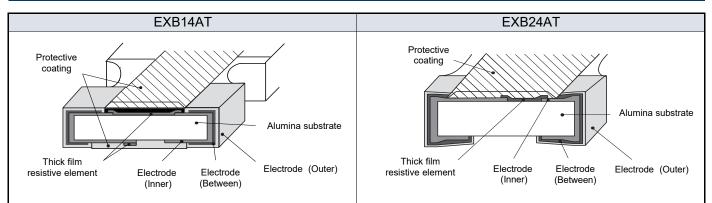
- Attenuation / level control / impedance matching of high frequency (communication signalling equipment cellular phones(GSM, CDMA, PDC, etc.), PHS, PDAs)
 - As for packaging methods, land pattern, soldering conditions and safety precautions, please see data files.

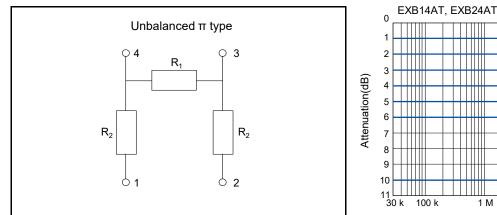

Ratings	
Part No.	EXB14AT, EXB24AT
Attenuation value	1 dB, 2 dB, 3 dB, 4 dB, 5 dB, 6 dB, 10 dB*
Attenuation value tolerance	1 dB, 2 dB, 3 dB, 4 dB, 5dB : ±0.3 dB
Allendation value tolerance	6 dB, 10 dB:±0.5 dB
Characteristic impedance	50 Ω
Power rating at 70 ℃	0.04 W / package
Frequency range	DC to 3.0 GHz
VSWR (Voltage standing wave ratio)	1.3 max.
Number of resistors	3 resistors
Number of terminals	4 terminals
Category temperature range	–55 ℃ to +125 ℃

74

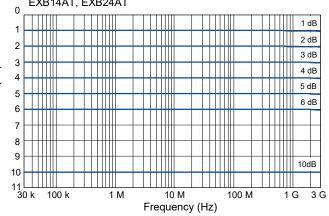
* Please inquire about the other Attenuator value

Power derating curve

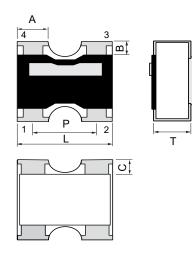

For resistors operated in ambient temperatures above 70 $^{\circ}$ C, power rating shall be derated in accordance with the figure on the right.


Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use

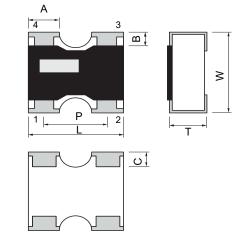
Chip Attenuator


Construction

Circuit configuration



Attenuation-frequency characteristics



Dimensions (not to scale)

EXB14AT

EXB24AT

< Marking Configuration>

The bar marking for recognizing terminal direction is located on the side of terminal 3, 4.

< Marking Configuration>

The bar marking for recognizing terminal direction is located on the side of terminal 4.

								Unit : mm
Part No.				Dimensions				Mass (Weight) (Reference)
Fait NO.	L	W	Т	А	В	С	P (typical value)	(g/1000 pcs)
EXB14AT	0.80±0.10	0.60±0.10	0.35±0.10	0.35±0.10	0.15±0.10	0.15±0.10	0.50	0.7
EXB24AT	1.00±0.10	1.00±0.10	0.35±0.10	0.40±0.10	0.15±0.10	0.25±0.10	0.65	1.1

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to change without router , so that it. Should a safety concern arise regarding this product, please be sure to contact us immediately. 75

Panasonic INDUSTRY

Surface Mount Resistors Packaging Method (Taping)

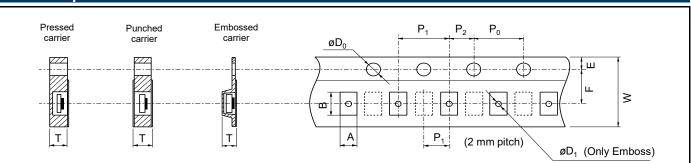
Sunac	e mount resistors series		Dresser		d quantity : pcs/reel)	E na harana a
Decilient	Deathle	Size	Pressed	Punched	Punched	Embossed
Products	Part No.	(mm) (inch)	carrier taping	carrier taping	carrier taping	carrier taping
			(2 mm pitch)	(2 mm pitch)	(4 mm pitch)	(4 mm pitch)
	ERJXGN	0402 (01005)	20,000 ^{*1}	—	-	40,000 ^{*2}
	ERJ1GN	0603 (0201)	15,000	—	-	—
	ERJ2GE	1005 (0402)	_	10,000		
	ERJ3GE	1608 (0603)	—	—	5,000	—
Thick film	ERJ6GE	2012 (0805)	_		5,000	
chip resistors	ERJ8GE	3216 (1206)	_	_	5,000	
	ERJ14	3225 (1210)	_			5,000
	ERJ12	4532 (1812)				5,000
	ERJ12Z	5025 (2010)	_	_		5,000
	ERJ1T	6432 (2512)				4,000
	ERJXGN	0402 (01005)				
	ERJ1GN/1RH		20,000 ^{*1}			40,000 ^{*2}
		0603 (0201)	15,000			
	ERJ2RC/2RH/2RK	1005 (0402)		10,000		
Precision	ERJ3RB/3RE/3EK	1608 (0603)		—	5,000	
thick film	ERJ6RB/6RE/6EN	2012 (0805)	—	—	5,000	—
chip resistors	ERJ8EN	3216 (1206)		<u> </u>	5,000	
	ERJ14N	3225 (1210)	—	—	—	5,000
	ERJ12N	4532 (1812)	—	—		5,000
	ERJ12S	5025 (2010)				5,000
	ERJ1TN	6432 (2512)	—	_		4,000
	ERA1A	0603 (0201)	15,000			
Metal film	ERA2A/2V	1005 (0402)		10,000		_
(Thin film)	ERA3A/3V/3K	1608 (0603)	_		5,000	_
chip resistors,	ERA6A/6V/6K	2012 (0805)			5,000	
High reliability type	ERA8A/8V/8K/8P	3216 (1206)			5,000	
		1 1	10.000		5,000	
	ERJ2LW/2BW	1005 (0402)	10,000	-		_
	ERJ2BS/2BQ	1005 (0402)		10,000		
	ERJ3L/3B/3R/L03	1608 (0603)	_	—	5,000	_
Thick film	ERJ6L/6B/6C ERJ6D/6R/L06	2012 (0805)	—	—	5,000	—
chip resistors/	ERJ8B/8C/8R/L08	3216 (1206)	_		5,000	_
Low resistance type	ERJ14B/14R/L14	3225 (1210)	_	_		5,000
	ERJ12R/L12	4532 (1812)	_	_	_	5,000
	ERJ12Z/L1D	5025 (2010)				5,000
	ERJ1TR	6432 (2512)	_	_		4,000
	ERJL1W	6432 (2512)	_			3,000
	ERJMP2	3216 (1206)				3,000
	ERJMP3	5025 (2010)				3,000
Current sensing	ERJMP4	6432 (2512)			—	2,000
resistors,	ERJMS4	6432 (2512)	—	_	—	2,000
Metal plate type	ERJMS6	6468 (2526)	_	_		1,000 (8mm Pitch
	ERJMB1	2550 (1020)	—	_	_	3,000
	ERJM1W	6432 (2512)	_	—		3,000
Current sensing resistors, Metal foil type	ERJMFBA	1005 (0402)	_	10,000	_	_
	ERJA1	3264 (1225)		_		4,000
High power chip resistors/	ERJB1/ERJC1 ^{*3} ERJD1 ^{*4}	2550 (1020)	_	_		5,000
Wide terminal type	ERJB2/ERJD2*4	1632 (0612)	_	_	5,000	_
	ERJB3	1220 (0508)	_	_	5,000	

*1: W8P2 : Width 8 mm, Pitch 2 mm,

*2: W4P1 : Width 4 mm, Pitch 1 mm

*3: Anti-Sulfurated High power chip resistors / Wide terminal type

*4: Low TCR High power chip Resistors / Wide terminal type


Panasonic INDUSTRY

Surface Mount Resistors Packaging Method (Taping)

Sunaci	e mount resistors serie		Pressed	Punched	d quantity : pcs/reel) Punched	Embossed
Products	Part No.	Size	carrier taping	carrier taping	carrier taping	carrier taping
FIGUUCIS	Fait NO.	(mm) (inch)	(2 mm pitch)	(2 mm pitch)	(4 mm pitch)	(4 mm pitch)
Llink was sisten thick	ERJPB3	1608 (0603)	(2 mm pitch)	(2 mm pitch)	5,000	(4 mm pitch)
High precision thick film chip resistors	ERJPB6	2012 (0805)			5,000	
	ERJP60 ERJPA2	. ,		10.000	5,000	
-		1005 (0402)	_	10,000		
Anti-Surge Thick film	ERJP03/PA3	1608 (0603)			5,000	_
chip resistors	ERJP06	2012 (0805)			5,000	_
-	ERJP08/PM8	3216 (1206)	—	—	5,000	
	ERJP14	3225 (1210)	_		_	5,000
Anti-Pulse Thick	ERJT06	2012 (0805)			5,000	
film chip resistors	ERJT08	3216 (1206)	—	—	5,000	—
•	ERJT14	3225 (1210)	_	_	_	5,000
_	ERJU0X	0402 (01005)	20,000		—	
	ERJU01	0603 (0201)	15,000			
	ERJS02/U02	1005 (0402)	_	10,000	_	—
-	ERJS03/U03	1608 (0603)	_	_	5,000	_
Anti-Sulfurated	ERJS06/U06	0040 (0007)			F 000	
Thick film	ERJU6S/U6Q	2012 (0805)	—		5,000	
chip resistors	ERJS08/U08	3216 (1206)		_	5,000	
-	ERJS14/U14	3225 (1210)				5,000
-	ERJS12/U12	4532 (1210)				5,000
-	ERJS12/012	5025 (2010)				5,000
-						4,000
	ERJS1T/U1T	6432 (2512)			_	4,000
Anti-Sulfurated	ERJU2R	1005 (0402)	_	10,000	_	—
Thick film chip resistors /	ERJU3R	1608 (0603)	—	—	5,000	_
Precision type	ERJU6R	2012 (0805)	_		5,000	
Anti-Sulfurated	ERJUP3	1608 (0603)			5,000	
Thick film chip	ERJUP6	2012 (0805)			5,000	
resistors /					•	
Anti-Surge type	ERJUP8	3216 (1206)	_		5,000	—
High temperature thick	ERJH2G/2C/2R	1005 (0402)		10,000	—	
film chip resistor	ERJH3G/3E/3Q	1608 (0603)			5,000	
1	ERJH6G/HP6	2012 (0805)	_		5,000	_
	EXB14V	0806 (0302)	—	10,000	_	_
-	EXB24V	1010 (0404)	—	10,000		—
-	EXB34V	1616 (0606)	_		5,000	
-	EXBV4V	1616 (0606)			5,000	_
-	EXB18V	1406 (0502)		10,000		
Chip resistor	EXB28V	2010 (0804)		10,000		
array	EXBN8V	2010 (0804)		10,000	_	_
-	EXB38V	3216 (1206)			5,000	
-	EXBV8V	3216 (1206)			5,000	
-	EXBS8V	5022 (2009)				2,500
-	EXB2HV	3816 (1506)			5,000	
		0806 (0302)	_	10.000		
F	EXBU14			10,000	—	
ŀ	EXBU18	1406 (0502)	_	10,000	—	
Anti-Sulfurated	EXBU24	1010 (0404)		10,000		
chip resistor array	EXBU34	1616 (0606)		—	5,000	
-	EXBU28	2010 (0804)	_	10,000		
	EXBU38	3216 (1206)	—	—	5,000	—
	EXBU2H	3816 (1506)	_		5,000	
	EXBD	3216 (1206)	—	—	5,000	
hin register networks	EXBE	4021 (1608)	_		_	4,000
Chip resistor networks	EXBA	6431 (2512)	_			4,000
-	EXBQ	3816 (1506)	_	_	5,000	_
	EXB14AT	0806 (0302)		10,000		
Chip attenuator	EXB24AT	1010 (0404)		10,000		

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to change without house. For local, i.e. and Should a safety concern arise regarding this product, please be sure to contact us immediately. 77

Carrier tape

Pressed carrier taping (2 mm Pitch)

				2									
 Chip resister 	Chip resistors / Precision chip / Metal film(Thin film)chip / Low resistance / Anti-Sulfurated												
Part No.	Size (inch)	А	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т		
ERJXGN ERJU0X	0402 (01005)	0.24±0.03	0.45±0.03								0.31±0.05		
ERJ1GN ERJ1R□ ERJU01 ERA1A	0603 (0201)	0.38±0.05	0.68±0.05	8.00±0.20	3.50±0.05	1.75±0.10	2.00±0.10	2.00±0.05	4.00±0.10	1.50 +0.10/0	0.42±0.05		
ERJ2LW	1005 (0402)	0.68±0.10	1.20±0.10								0.60±0.05		
ERJ2BW	1000 (0402)	0.67±0.10	1.17±0.10								0.61±0.05		

Punched carrier taping (2 mm Pitch)

Chip resistors	Chip resistors / Precision chip / Thin film chip / Low resistance / Anti-Surge / Anti-Sulfur / High temperature / Metal foil type											
Part No.	Size (inch)	А	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т	
ERJ2 ERJPA2 ERJ ERJ ERJ ERA2	1005 (0402)	0.67±0.05	1.17±0.05	8.00±0.20	3.50±0.05	1.75±0.10	2.00±0.10	2.00±0.05	4.00±0.10	1.50 +0.10/0	0.52±0.05	
ERJMFBA											0.60±0.05	

 Chip resist 	Chip resistor array / Anti-Sulfurated chip resistor Aarray / Chip attenuator											
Part No.	Size (inch)	A	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т	
EXB14V	0806	0.70	0.95									
EXB14AT	(0302)	+0.10/-0.05	+0.05/-0.10									
EXB18V	1406 (0502)		1.60±0.10	1								
EXB24V EXBU24 EXB24AT	1010 (0404)	1.20±0.10	1.20±0.10	8.00±0.20	3.50±0.05	1.75±0.10	2.00±0.10	2.00±0.05	4.00±0.10	1.50 +0.10/0	0.52±0.05	
EXB28V EXBU28 EXBN8V	2010 (0804)		2.20±0.10									

Punched carrier taping (4 mm Pitch)

• Chip resistors / Precision chip / Metal film(Thin film)chip / Low resistance / High power / High precision / Anti-Surge /

Part No.	Size (inch)	A	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	T
ERJ3 ERJ3LW(10mΩ) ERJ3BW ERJ 3 ERJ 3 ERJ 3 ERA3	1608 (0603)	1.10±0.10	1.90±0.10								0.70±0.05
ERJ3LW(5mΩ)											
ERJ6 ERJ ERJ ERA6	2012 (0805)	1.65±0.15	2.50±0.20	8.00±0.20	3.50±0.05	1.75±0.10 4.00±0.10 2.00±0.05	4.00±0.10	1.50 +0.10/0	0.84±0.05		
ERJB3	1220 (0508)									10.10/0	
ERJ6BW ERJ6LW ERJ6CW	2012 (0805)	1.55±0.15	2.30±0.20						0.94±0.05		
ERJ8 ERJ8 ERJ 8 ERA8	3216 (1206)	2.00±0.15	3.60±0.20	50±0.20							0.84±0.05
ERJB2 ERJD2	1632 (0612)										

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to charge without notice, restrictions, Should a safety concern arise regarding this product, please be sure to contact us immediately. 78

Chip resistor array / Anti-Sulfurated chip resistor array / Chip resistor networks

Size (inch)	A	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т	
1616 (0606)		1 95+0 20									
1010 (0000)		1.0010.20									
3216 (1206)		3 60+0 20								0.70±0.05	
5210 (1200)		3.00±0.20								0.7010.03	
1.95±0.15 3816 (1506)	(1506) 1.95±0.15	1.95±0.15	4 10+0 15							4 50	
3010 (1300)		4.1010.10	8.00±0.20	3.50±0.05	1.75±0.10	4.00±0.10	2.00±0.05	4.00±0.10			
1616 (0606)		1.95±0.20							0.0410.05		
3216 (1206)		3.60±0.20								0.84±0.05	
3216 (1206)	2.00±0.20	3.60±0.20								0.84±0.10	
3816 (1506)	1.90±0.20	4.10±0.20								0.64±0.05	
	Size (inch) 1616 (0606) 3216 (1206) 3816 (1506) 1616 (0606) 3216 (1206) 3216 (1206)	Size (inch) A 1616 (0606)	Size (inch) A B 1616 (0606) 1.95±0.20 3216 (1206) 3.60±0.20 3816 (1506) 4.10±0.15 1616 (0606) 1.95±0.20 3216 (1206) 3.60±0.20 3216 (1206) 3.60±0.20 3216 (1206) 2.00±0.20	Size (inch) A B W 1616 (0606) 1.95±0.20 1.95±0.20 3216 (1206) 1.95±0.15 3.60±0.20 3816 (1506) 1.95±0.20 4.10±0.15 1616 (0606) 1.95±0.20 3.60±0.20 3216 (1206) 2.00±0.20 3.60±0.20	Size (inch) A B W F 1616 (0606) 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 3.50±0.05 1.95±0.20 3.50±0.20 3.50±0.20 3.50±0.20 3.50±0.20 3.50±0.20 3.50±0.20 3.50±0.20 3.50±0.20 3.50±0.20 3.50±0.20 3.50±0.	Size (inch) A B W F E 1616 (0606) 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 3.50±0.05 1.75±0.10 1.75±0.10 1616 (0606) 1.95±0.20 3.60±0.20 3.60±0.20 3.50±0.05 1.75±0.10 3216 (1206) 2.00±0.20 3.60±0.20 3.60±0.20 1.75±0.10 1.75±0.10	Size (inch) A B W F E P1 1616 (0606) 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 3.50±0.05 1.75±0.10 4.00±0.10 1616 (0606) 1.95±0.20 3.60±0.20 3.50±0.05 1.75±0.10 4.00±0.10 1616 (1206) 2.00±0.20 3.60±0.20 3.60±0.20 3.50±0.05 1.75±0.10 4.00±0.10	Size (inch) A B W F E P1 P2 1616 (0606) 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.75±0.10 1.75±0.10 1.75±0.10 2.00±0.05 1.05±0.20 3216 (1206) 2.00±0.20 3.60±0.20 3.60±0.20 3.50±0.05 1.75±0.10 4.00±0.10 2.00±0.05	Size (inch) A B W F E P1 P2 P0 1616 (0606) 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.95±0.20 1.75±0.10 1.75±0.10 1.75±0.10 1.00±0.10	Size (inch) A B W F E P1 P2 P0 ØD0 1616 (0606) 1.95±0.20 1.95±0.20 3.60±0.20 3.60±0.20 3.60±0.20 3.60±0.20 1.75±0.10 4.00±0.10 2.00±0.05 4.00±0.10 1.50 1616 (0606) 1.95±0.20 3.60±0.20 3.50±0.05 1.75±0.10 4.00±0.10 2.00±0.05 4.00±0.10 1.50 1616 (0606) 3.60±0.20 3.60±0.20 3.60±0.20 3.60±0.20 3.50±0.05 1.75±0.10 4.00±0.10 2.00±0.05 4.00±0.10 1.50 3216 (1206) 2.00±0.02 3.60±0.20 3.60±0.20 3.60±0.20 3.60±0.20 3.60±0.20	

Embossed carrier taping (1 mm Pitch)

Chip resistors											Unit : mm
Part No.	Size (inch)	A	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т
ERJXGN	0402 (01005)	0.25±0.05	0.45±0.05	4.00±0.20	1.80±0.05	0.90±0.10	1.00±0.10	1.00±0.10	2.00±0.10	0.80±0.10	0.5 max.

Embossed carrier taping (4 mm Pitch)

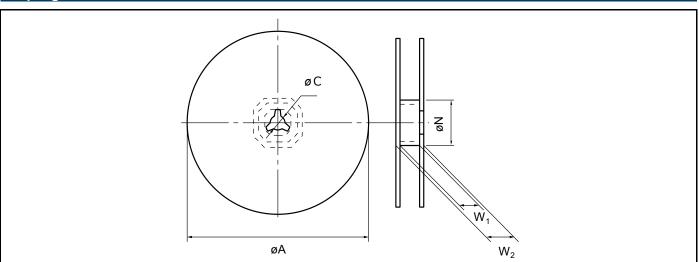
• Chip resistors / Precision chip / Low resistance / High power / Anti-Surge / Anti-Pulse / Anti-Sulfurated

 Chip resist 	ors / Precision	chip / Low r	esistance / I	ligh power	Anti-Surge	Chip resistors / Precision chip / Low resistance / High power / Anti-Surge / Anti-Pulse / Anti-Sulfurated										
Part No.	Size (inch)	A	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т	øD ₁				
ERJ14 ERJ□14	3225 (1210)	2.80±0.20	3.50±0.20	8.00±0.30	3.50±0.05							1.00 +0.10/0				
ERJ12□ ERJ□12	4532 (1812)	3.50±0.20	4.80±0.20													
ERJ12Z ERJ12S ERJ⊡1D	5025 (2010)	- 2.80±0.20	5.30±0.20			1.75	4.00	2.00	4.00	1.50						
ERJB1 ERJC1 ERJD1	2550 (1020)	2.0010.20	5.5010.20	12.00 ±0.30	5.50±0.20	±0.10	±0.10	±0.05	±0.10	+0.10/0		15 min.				
ERJ1T ERJ IT ERJL1W	6432 (2512)	3.60±0.20	6.90±0.20								1.60±0.10					
ERJA1	3264 (1225)	3.50±0.20	6.80±0.20	-							1.10±0.20					

• Current sensing resistors, Metal plate type

Part No.	Size (inch)	A	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т	øD ₁
ERJMP2 (1 mΩ)	3216 (1206)										1.55±0.20	_
ERJMP2 (2 mΩ)	3216 (1206)	1.90±0.20	3.50±0.20	8.00±0.30	3.50±0.10						1.40±0.20	_
ERJMP2 (3 to 50 mΩ)	3216 (1206)										1.10±0.20	
ERJMP3 (1 to 2 mΩ)	5025 (2010)			40.00							1.55±0.20	_
ERJMP3 (3 to 50 mΩ)	5025 (2010)	2.90±0.20	5.40±0.20	12.00 ±0.30	5.50±0.10	1.75 ±0.10	4.00 ±0.10	2.00 ±0.05	4.00 ±0.10	1.50 +0.10/0	1.15±0.20	_
ERJMB1	2550 (1020)										1.55±0.20	-
ERJMP4 (1 to 2 mΩ)	6432 (2512)										1.60±0.20	1.5 min.
ERJMP4 (3 to 50 mΩ)	6432 (2512)	3.50±0.20	6.90±0.20	12.00 ±0.30	5.50±0.10						1.20±0.20	_
ERJMS4	6432 (2512)	1									1.60±0.20	1.5 min.
ERJM1W	6432 (2512)	1									1.80±0.20	1.5 min.

 Chip resister 	Chip resistor array / Chip resistor networks											Unit : mm
Part No.	Size (inch)	A	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т	øD ₁
EXBS8V	5022 (2009)	2.80±0.20	5.70±0.20						4.00	4 50	1.6 max.	
EXBE	4021 (1608)	2.50±0.20	4.40±0.20	12.00±0.30	5.50±0.20	1.75 ±0.10	4.00 ±0.10	2.00 ±0.05	4.00 ±0.10	1.50 +0.10/0	1.10±0.20	1.5 min.
EXBA	6431 (2512)	3.50±0.20	6.80±0.20			20.10	_0.10	20.00	_0.10	0110/0	1.1010.20	

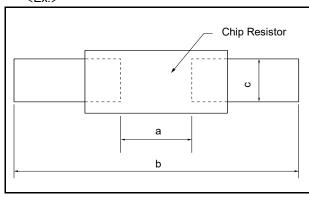

Emboss	Embossed carrier taping (8 mm Pitch)											
Current sensing resistors, Metal plate type Unit : mm												
Part No.	Size (inch)	А	В	W	F	E	P ₁	P ₂	P ₀	øD ₀	Т	øD ₁
ERJMS6	6468 (2526)	6.90±0.20	7.50±0.20	12.00 ±0.30	5.50±0.05	1.75 ±0.10	8.00 ±0.10	2.00 ±0.05	4.00 ±0.10	1.50 +0.10/0	2.45±0.20	1.5 min.

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Design and specifications are each subject to charge without notice, restrictions, Should a safety concern arise regarding this product, please be sure to contact us immediately. 79

I Init · mm

Panasonic INDUSTRY

Taping reel

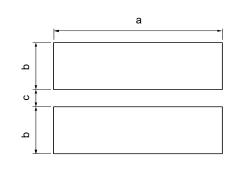

					Unit : mm						
Tapa width (\\/)			Dimensions								
Tape width (W)	øA	øN	øC	W ₁	W ₂						
4 mm width	180.0±3.0			4.5±0.5	7.0±0.5						
8 mm width	180.0 0/-1.5	60.0+1.0/0	13.0±0.2	9.0+1.0/0	11.4±1.0						
12 mm width	180.0 0/-1.5		13.0±0.2	13.0+1.0/0	15.4±1.0						
24 mm width	380.0±2.0	80.0±1.0		25.4±1.0	29.4±1.0						

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 80

Recommended land pattern

• An example of a land pattern for the rectangular type is shown below.

<Ex.>

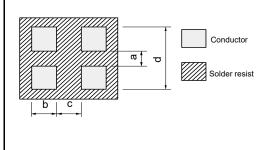

			Unit : mm
Size		Dimensions	
mm/inch	а	b	С
0402/01005	0.15 to 0.20	0.5 to 0.7	0.20 to 0.25
0603/0201	0.3 to 0.4	0.8 to 0.9	0.25 to 0.35
1005/0402	0.5 to 0.6	1.4 to 1.6	0.4 to 0.6
1608/0603	0.7 to 0.9	2.0 to 2.2	0.8 to 1.0
2012/0805	1.0 to 1.4	3.2 to 3.8	0.9 to 1.4
3216/1206	2.0 to 2.4	4.4 to 5.0	1.2 to 1.8
3225/1210	2.0 to 2.4	4.4 to 5.0	1.8 to 2.8
4532/1812	3.3 to 3.7	5.7 to 6.5	2.3 to 3.5
5025/2010	3.6 to 4.0	6.2 to 7.0	1.8 to 2.8
6432/2512	5.0 to 5.4	7.6 to 8.6	2.3 to 3.5
6432/2512*	3.6 to 4.0	7.6 to 8.6	2.3 to 3.5

High power (double-sided resistive elements structure) type

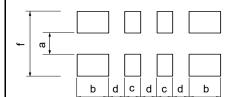
Part No.	Size	[Dimension	S
i artivo.	(inch)	а	b	С
ERJ2LW/2BW	1005 (0402)	0.52	1.4 to 1.6	0.4 to 0.6
ERJ3LW/3BW	1608 (0603)	0.5 to 0.8	2.5 to 2.7	0.9 to 1.1
ERJ6LW		0.6 to 0.8	3.2 to 3.8	1.1 to 1.4
ERJ6BW		0.9	3.2 to 3.8	1.1 to 1.4
ERJ6CW (10 to 13 mΩ)	2012 (0805)	0.7 to 0.9	3.2 to 3.8	1.1 to 1.4
ERJ6CW (15 to 30 mΩ)		0.9 to 1.1	3.2 to 3.8	1.1 to 1.4
ERJ8BW				
ERJ8CW (10 to 16 mΩ)	3216 (1206)	1.2	4.4 to 5.0	1.3 to 1.8
ERJ8CW (18 to 50 mΩ)		2.0 to 2.6	4.4 to 5.0	1.2 to 1.8
				Unit : mm

* ERJL1W

• An example of a land pattern for high power chip resistors / Wide terminal type is shown below.

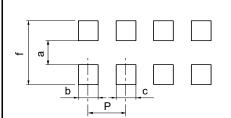


			Unit : mm					
Part No.	Dimensions							
Tarrio.	а	b	С					
ERJA1	6.4	1.70	0.60					
ERJB1								
ERJC1 ^{*1}	5.0	1.30	0.75					
ERJD1 ^{*2}								
ERJB2	3.2	0.95	0.70					
ERJD2 ^{*2}	3.2	0.95	0.70					
ERJB3	2.0	0.80	0.60					

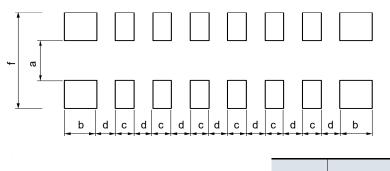

*1: Anti-Sulfurated High power chip resistors / Wide terminal type

Recommended land pattern

• An example of a land pattern for Chip Resistor Array, Anti-Sulfurated Chip Resistor Array and Chip Attenuator is shown below. Unit : mm

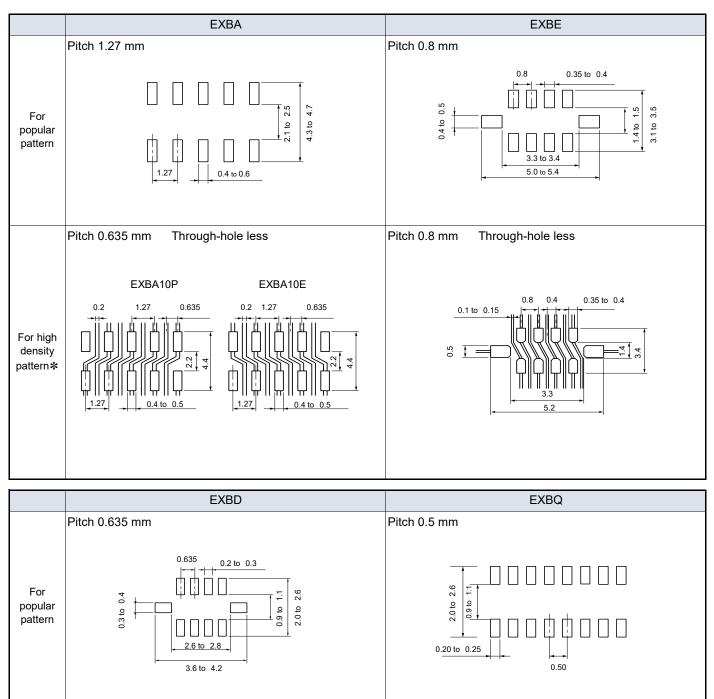


Part No.	Dimensions						
	а	b	С	d			
EXB14V EXB14A	0.30	0.30	0.30	0.80 to 0.90			
EXB24V EXBU24 EXB24A	0.5	0.35 to 0.40	0.30	1.4 to 1.5			



					Unit : mm
Part No.		Di	imensions		
Fall NO.	а	b	с	d	f
EXB28V EXBU28	0.40	0.525	0.25	0.25	1.40
EXBN8V	0.45 to 0.50	0.35 to 0.38	0.25	0.25	1.40 to 2.00

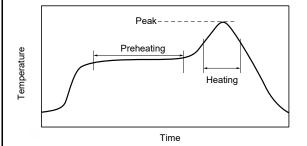
Unit : mm


					Offict . Hilli		
Dautha	Dimensions						
Part No.	а	b	С	f	Р		
EXB18V	0.20 to 0.30	0.15 to 0.20	0.15 to 0.20	0.80 to 0.90	0.40		
EXBV4V EXBV8V	0.7 to 0.9	0.4 to 0.45	0.4 to 0.45	2 to 2.4	0.80		
EXB34V EXB38V EXBU34 EXBU38	0.7 to 0.9	0.4 to 0.5	0.4 to 0.5	2.2 to 2.6	0.80		
EXBS8V	1 to 1.2	0.5 to 0.75	0.5 to 0.75	3.2 to 3.8	1.27		

					Unit : mm
Part No.	Dimensions				
Fait NO.	а	b	С	d	f
EXB2HV EXBU2H	1.00	0.425	0.25	0.25	2.00

Recommended land pattern

• An example of a land pattern for Chip Resistor Networks is shown below.


* When designing high density land patterns, examine the reliability of isolation among the lines and adopt the chip resistor networks.

83

Recommended soldering conditions (Rectagular type)

Recommendations and precautions are described below.

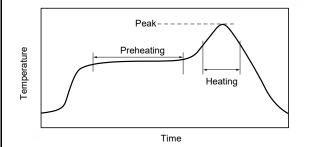
- Recommended soldering conditions for reflow
 Reflow soldering shall be performed a maximum of two times.
 - •Please contact us for additional information when used in conditions other than those specified.
 - •Please measure the temperature of the terminals and study every kind of solder and printed circuit board for solderability be fore actual use.

ł	For soldering (Example : Sn/Pb)			
		Temperature	Time	
	Preheating	140 ℃ to 160 ℃	60 s to 120 s	
_	Main heating	Above 200 ℃	30 s to 40 s	
_	Peak	235 ± 5 ℃	max. 10 s	

For lead-free soldering (Example : Sn/Ag/Cu)

		o ,
	Temperature	Time
Preheating	150 ℃ to 180 ℃	60 s to 120 s
Main heating	Above 230 ℃	30 s to 40 s
Peak	max. 260 ℃	max. 10 s

• Recommended soldering conditions for flow


	For soldering		For lead-fre	ee soldering
	Temperature	Time	Temperature	Time
Preheating	140 ℃ to 160 ℃	60 s to 120 s	150 ℃ to 180 ℃	60 s to 120 s
Soldering	245 ± 5 ℃	20 s to 30 s	max. 260 ℃	max. 10 s

Recommended soldering conditions (Chip resistor array / networks and Chip attenuator)

Recommendations and precautions are described below.

Recommended soldering conditions for reflow

- •Reflow soldering shall be performed a maximum of two times.
- •Please contact us for additional information when used in conditions other than those specified.
- Please measure the temperature of the terminals and study every kind of solder and printed circuit board for solderability be fore actual use.

For soldering	(Example : Sn/Pb))
i or oordoning		,

	Temperature	Time
Preheating	140 ℃ to 160 ℃	60 s to 120 s
Main heating	Above 200 ℃	30 s to 40 s
Peak	235 ± 5 ℃	max. 10 s

For lead-free soldering (Example : Sn/Ag/Cu)

	Temperature	Time
Preheating	150 ℃ to 180 ℃	60 s to 120 s
Main heating	Above 230 ℃	30 s to 40 s
Peak	max. 260 ℃	max. 10 s

Flow soldering

We do not recommend flow soldering, because a solder bridge may form. Please contact us regarding flow sol der ing of EXBA series.

Standard for resistance value and resistance tolerance

Basis standard

IEC Publication	60062	: Marking codes for resistors and capacitors.
IEC Publication	60063	: Preferred number series forresistors and capacitors.
JIS C 5062 :	: Marking co	des for resistors and capacitors.
JIS C 5063 :	: Preferred r	number series for resistors and capacitors.

Resistance values

The resistance values are notched by "Ratio" below in each series.

Series	Resistance tolerance (Standard)	Ratio	Remarks
E6	±20 %	⁶ √10=1.46	
E12	±10 %	¹² √10=1.21	
E24	± 5 %	²⁴ √10=1.10	Please refer to standard resistance values shown on this catalog.
E48	± 2 %	⁴⁸ √10=1.05	
E96	± 1%	⁹⁶ √10=1.02	

How to express the resistance value with a Panasonic part number

The resistance value expressed in ohms is iden tified by a three digit number or a four digit number.

The last digit specifies the number of zeroes to follow.

The letter "R" shall be used as the decimal point for less than 10 $\Omega.$

The examples of a three digit number

Resistance code	Value in ohms (Ω)
R56	0.56
5R6	5.6
100	10
271	270
102	1 k
273	27 k
104	100 k
275	2.7 M
106	10 M
107	100 M

The examples of a four digit number

-	
Resistance code	Value in ohms (Ω)
R562	0.562
5R62	5.62
56R2	56.2
1000	100
2711	2.71 k
1002	10 k
2713	271 k
1004	1 M
2751	2.71 M
1006	100 M

How to express the resistance tolerance with a Panasonic part number

The resistance tolerance is identified by a single letter in accordance with the following table and the code is placed just before the resistance code in the following examples.

Tolerance code	Tolerance (%)	Examples
W	± 0.05	W1001 : 1000 Ω ± 0.05 %
В	± 0.1	B1001 : 1000 Ω ± 0.1 %
С	± 0.25	C1001 : 1000 Ω ± 0.25 %
D	± 0.5	D1001 : 1000 Ω ± 0.5 %
F	± 1	F1001 : 1000 Ω ± 1 %
G	± 2	G1001 : 1000 Ω ± 2 %
J	± 5	J101:100 Ω ± 5 %
К	± 10	K101 : 100 Ω ± 10 %
М	± 20	M101 : 100 Ω ± 20 %

Standard resistance values

E6	E12	E24	E48	E96	E6	E12	E24	E48	E96	E6	E12	E24	E48	E96
	10	10	100	100		22	22 22 24	215	215		47	47	464	464
				102					221					475
			105	105				226	226	47			487	487
				107					232					499
		11	110	110				007	237			51	511 -	511
			110	113				237	243					523
			115	115				249	249				536	536
			115	118					255					549
10			121	121	22			261	261			56	562 -	562
		12	121	124				201	267					576
			127	127				274	274				590	590
			121	130			27	214	280		56			604
	12		133	133				287	287		00	62	619	619
		13	155	137		27		287	294					634
			140	140				301	301				649	649
				143			30		309					665
				147				316	316			68	681	681
	15	15		150			33		324					698
			154	154				332	332				715	715
				158					340		68			732
			162	162		33		348	348		68	75	750	750
				165					357					768
			169	169			36	365	365				787	787
				174					374	68		82	-	806
15		18	178	178	33			383	383				825	825
				182			39		392					845
			187	187				402	402		82		866	866
	18			191					412					887
			196	196		39	43	422	422			91	909	909
		20		200					432					931
			205	205				442	442				953	953
				210					453					976

Safty Precautions

When using our products, no matter what sort of equipment they might be used for, be sure to confirm the applications and environmental conditions with our specifications in advance.

Panasonic Industry Co., Ltd. Device Solutions Business Division

1006 Kadoma, Kadoma City, Osaka 571-8506 Japan

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thin Film Resistors - SMD category:

Click to view products by Panasonic manufacturer:

Other Similar products are found below :

M55342K06B34E0RT3 D55342E07B3	79BR-TR AR03BTC0390	AR03BTC2201	AR03BTC2203	AR03BTC4223N	AR05BTC0280
AR05BTC1100 AR05BTC1201 AR05	BTC1202 AR05BTC1300	AR05BTC14R3	AR05BTC1500	AR05BTC1523	AR05BTC1620
AR05BTC1622 AR05BTC1623 AR05	BTC1760 AR05BTC1800	AR05BTC1823	AR05BTC1871	AR05BTC2432	AR05BTC3300
AR05BTC3400 AR05BTC3902 AR05	BTC4201 AR05BTC4423	AR05BTC4530	AR05BTC4640	AR05BTC4993	AR05BTC5002
AR05BTC5003 AR05BTC5101 AR05	BTC5601 AR05BTC5603	AR05BTC6402	AR05BTC6800	AR05BTC7151	AR05BTC7502
AR05BTC8060 AR05BTC9760 AR06	BTC1002 AR06BTC1022	AR06BTC1183	AR06BTC1580	AR06BTC1622	AR06BTC1693
AR06BTC2431 AR06BTC2490 AR06	BTC3833				