sun X

DIGITAL FIBER SENSOR

FX-300 series

Constant advances achieving the highest level of performance in its class

The FX-300 series of next-generation fiber sensors provides the highest level of sensing performance in its class

'Stable sensing', 'high sensing performance', 'easy operation', 'improved ease of maintenance' and 'preservation of the environment' are the five concepts underlying the new FX-300 series!

Full range of fibers

P. 9 Guide for each industry

Description of different fibers and performance for each industry

LCD • Semiconductor / P. 9 to P. 12

Electronic component - Automatic assembly / P. 13 to P. 14

Pharmaceutical • Packaging / P. 15

High Stability

Stable sensing over long and short periods

FX-301 FX-301-HS FX-305

In addition to a 'four-chemical emitting element' which suppresses changes in the light emitting element over time so that a stable level of light emission can be maintained over long periods, a 'APC (Åuto Power Ćontrol) circuit' has also been adopted afreshly. The light emitting amount can be controlled in minute degrees so that even changes occurring over very short periods can be handled, allowing stable sensing performance by suppressing deviations in light emitting amounts caused by changes in the ambient environment that could not previously be suppressed.

Even greater sensing range

 FX-301/B/G/H FX-301-HS FX-305Adoption of a 'double coupling lens' that increases emission efficiency to its maximum limits and greatly increases sensing range. Sensing ranges with small diameter fibers and ultra-small diameter fibers, which have become very popular due to the miniaturization of chip components, have been increased by 50% over previous values achieved with other amplifiers.

- Conventional fiber sensors (Without lens)

- Double coupling lens

Superior Performance

Light-emitting amount selection

If the light receiving level becomes saturated during closerange sensing or when sensing transparent or minute objects, you can adjust the light emitting amount of the sensor to stabilize sensing without needing to change the response time. Sensing that previously required the response time or fibers to be changed can now be set much more easily using this function.

Large display 9999

FX-301 FX-301-HS FX-305

Light emitting amount can be changed without changing response time

FX-305
Large display with 4 digits (9999). With a greater difference in digit value than previous models, threshold values can be set in units of 1 digit up to maximum 9999. Threshold setting can now be done more easily and accurately.

(During STDF, LONG and U-LG modes)

Ultra high-speed 35μ s response

Ultra high-speed 35μ s response. Even small objects moving at high speeds can be sensed. In addition, at 65μ s the FX-301 standard type is also twice as fast as previous models.

Concept 2

Simplified systems using new operating modes

FX-305

A window comparator mode and differential sensing mode have been added. These modes make it easy to carry out sensing tasks that previously required multiple sensors or involved complex threshold settings.

- Window comparator mode

Upper and lower limits for threshold values can be set so that the incident light intensity can turn on and off within those ranges. Single output is used, so that only one cable is required, and no PLC processing is required either.

- Differential sensing mode

<Sensing of tiny moving objects>

Sensing of only sudden changes in light amounts \rightarrow Only the target objects are sensed. No need to reset the sensitivity.

Equipped with 5 types timers
 FX-305

The FX-305 includes the same ON-delay / OFF-delay / ONE-SHOT timer as the FX-301(-HS), as well as an ON-delay•OFFdelay timer and an ON-delay•ONE-SHOT timer. A wide variety of timer control operations can be carried out by these fiber sensors alone.

Timer period: Output 10.5 to $9,999 \mathrm{~ms}$ (variable) Output 20.5 to 500 ms (variable)

Multi-purpose 2-output

Two independent output channels are provided, so that one sensor can be used for control tasks that previously required two sensors. In addition, the second output channel can be used for simple self-diagnosis and alarm output, so that ease of maintenance is improved.

New Alarm output: Output 2 is set concurrently with output 1
Drops in light amounts due to problems such as broken fibers or dirty tips are detected and output. When output 1 threshold value teaching is carried out with the FX-305, output 2 is set concurrently with the setting shifted by the amount of surplus.
Drops in surplus amounts of light intensity due to dust or other particles can therefore be detected and output.

Easy operation

Even beginners can quickly learn how to use the MODE NAVI

The use of only two switches makes for very simple operations
FX-301/B/G/H FX-301-HS FX-305
Only two switches, the large jog switch and the large MODE key, are required for operation. Depressing the large MODE key sets the 'mode selection' and 'mode cancel' functions. The large jog switch is used to select from the detailed functions available within each mode, as well as to change numerical values after the mode has been chosen.

- Large MODE key

- Large jog switch

Improved workability!
 Data bank switching and teaching can be carried out externally

FX-301 FX-305
The FX-CH2 external input unit (optional) can be used to carry out teaching and data bank switching operations externally without needing to operate the digital fiber sensors directly.
This greatly improves ease of workability during setup.

Easy confirming of threshold value settings

The threshold value can be confirmed by
The threshold value can be confirmed by turning the jog switch even during RUN mode.

Jog switch is turned

$$
\begin{aligned}
& \text { Left: FX-301(-HS) } \\
& \text { Output } 1 \text { for FX-305 Right: Output } 2 \text { for } \\
& \text { FX-305 }
\end{aligned}
$$

The threshold value is displayed
Key lock function prevents accidental setting changes
FX-301/B/G/H FX-301-HS FX-305

This disables input from the jog switch and MODE key, thus preventing operators from accidentally changing settings.

Easy Maintenance

Communication unit improves equipment starting up and maintenance upstream communication unit SC-GU1-485 Fx-301 FX-305

The communication unit enables inputs to the digital fiber sensors (such as teaching and data bank switching) to be carried ou via a PLC, and also allows confirming of the incident light intensity an output status for the fiber sensors. This greatly improves workability during equipment starting up and maintenance.

We now offer remote maintenance for sensors! Also reduces the work required to the

<Touch screen monitor example>

Communicable commands]

- Sensor incident
light intensity
- Sensor settings
verification
- Sensor output status

Threshold va
settings, etc.

ease of operation!

External input unit FX-CH2
Teaching and data bank switching for up to a maximum of 16 digital fiber sensors (FX-301 and FX-305) can be carried out al at once using an external device such as a PLC, touch screen or switch.

Support for stable sensing and smooth setup changes!

- Setup changes (external automatic teaching / data bank switching)

Digital fiber sensor settings can be changed using input from a touch screen or switch, so that production line setup changes can be carried out more easily.

External teaching

Full-auto teaching is recommended for teaching when the sensing object is changed without stopping the line.

Data bank switching

Settings such as output operations (L-ON / D-ON) and timer operations can be recorded in the digital fiber sensor's data bank and switching can be carried out externally.
※ Up to 3 files can be stored.

FX-CH2 function list

Teaching input
The following types of external teaching can be carried out.

- Full-auto teaching • Limit teaching ' -
\bullet Limit teaching '+' \bullet 2-level teaching

Data bank switching input

Switching between 3 channels of data banks and loading and saving of all channels at once can be carried out

Key lock setting input

The key lock function that prevents incorrect operations by operators can be set on and off.

Product lineup
Connector for input device CN-EP1 [1 pc. included with FX-CH2(-P)]

Wiring- and labor-saving design allows side-by-side configuration for up to sixteen units FX-301/B/G/H FX-301-HS FX-305

One unit can be used as either a main unit or sub unit The amplifier unit can be used as either a main unit or a sub unit. This feature allows for easy mounting in the side-by-side configuration. The main and sub unit functions are distinguished only by the proper use of the main cable and the sub cable. Moreover, inventory management and maintenance is simplified.

An optical communication function allows up to 16 sensors to be adjusted simultaneously

FX-301/B/G/H FX-305

The optical communication function allows the data that is currently set to be copied and saved all at once for all amplifiers connected together from the right side. This greatly reduces troublesome setup tasks and makes setup much smoother. In addition, troublesome adjustment operations at times such as when replacing sensors can also be carried out easily and data can also be copied and stored using the optical communication function.

※ Use the optical communication function for only the same types of sensors. Furthermore, the FX-301-HS is not equiipped with optical communication function capability. Refer to p. 30 for details.

Settings can be entered directly using numerical input

Every function can be directly set merely by the input of a four digit code (numbers) from the code table. This convenient feature is easy to set up. In the event that settings are accidentally changed at the operating site, merely entering the correct code can restore the original settings. This results in easy and quick maintenance.

Eco-friendly

Lead-free solder used is gentle on the environment
 EC

SUNX promotes the use of lead-free materials in all of its sensor manufacturing processes including those used for the FX-300 series of digital fiber sensors.

Selectable cable length

ECO

Reduced power consumption possible (ECO mode)
ECO
This turns off the digital display to reduce power consumption to approximately 600 W or less. (960 W is consumed when the display is on.)

Environmentally friendly packaging

ECO

With regard to effects on the environment, we only utilize the simplest of packaging methods greatly contributing to the reduction in wastes generated by your worksite Also, the bags are made of polyethylene, a substance that doesn't give off polluting gases when burned

Polyethylene packaging

FOR LCD•SEMICONDUCTOR INDUSTRY Guide to fibers and characteristics

Improved stability over long and short periods

A four-chemical emitting element for stable sensing over long periods has been added, in addition to an APC (Ảuto Ṕower Ćontrol) circuit that suppresses fluctuations in light amount over short periods.
The light amount becomes stable a short period after the power is turned on, so setup time can be reduced.

Mapping fiber

FT-KV1, FT-KV8, FR-KV1

This ultra-narrow optical beam fiber is ideal for mapping wafers.

1.5 mm 0.059 in thickness FT-KV1
$\mathrm{W} 2 \times \mathrm{H} 1.5 \times \mathrm{D} 20 \mathrm{~mm} \mathrm{~W} 0.079 \times \mathrm{H} 0.059$ \times D0.787 in ultra-compact size allows this sensor to be installed even in thin 200 mm 7.874 in wafer handlers.

Aperture angle $2{ }^{\circ}$ FT-WKV8, FT-KV8 Aperture angle for the ultra-narrow optical beam is 2° or less. The light does not spread much at all, so that stable sensing can be obtained.

Retroreflective type FR-KV1

With a thickness of 2.3 mm 0.091 in , this fiber can be installed almost anywhere, and it is a retroreflective type so optical beam axis alignment is simple.

Heat-resistant fiber

FT-H \square, FD-H \square

A variety of types are available, including a convergent reflective type for accurately sensing glass substrates, and a type with a bending radius of 10 mm 0.394 in that hardly takes up any space.

IC detection within a high temperature handler

Flexible type FT-H20W-M2
Withstands temperatures of $+200{ }^{\circ} \mathrm{C}$ $+392{ }^{\circ} \mathrm{F}$ and has a bending radius of 10 mm 0.394 in , this fiber can be installed almost anywhere.

Glass substrate detection

Heat-resistant $350^{\circ} \mathrm{C}+662{ }^{\circ} \mathrm{F}$ FD-H35-M2
Can be used in temperatures ranging from -60 to $+350^{\circ} \mathrm{C}-76$ to $+662^{\circ} \mathrm{F}$. Stable sensing is obtained even at temperatures exceeding $+300^{\circ} \mathrm{C}+572{ }^{\circ} \mathrm{F}$.

Glass substrate detection

Convergent reflective type FD-H30-L32, FD-H18-L31
Accurately senses glass substrates at high temperatures of $+300^{\circ} \mathrm{C}+572^{\circ} \mathrm{F}$.

Large display 9999

Large display with 4 digits (9999).
Extremely fine settings for detecting minute changes can be made to provide more stable sensing for items such as transparent objects.

Contact type liquid level detection fiber FD-F8Y

[Example of using liquid level detection fiber sensor (LONG mode)]

Previous display	FX-305
<digit value><Extra width> Liquid absent 500 Liquid present $40-460$	

Around liquids • Chemical-resistant fiber FT-Z802Y, FD-F705, FT-F902

Chemical-resistant fiber with fluorine resin coatings over the whole of the fiber, leak detection fiber that quickly sense leaks such as from detergents, and liquid detection fiber that accurately sense liquid levels are among the lineup of fibers that are ideal for liquid sensing.

Detecting wafer cassette in cleaning tank

Chemical-resistant fiber FT-Z802Y
Fluorine resin coating allows fiber to be used with confidence even where contact with chemicals may occur.
(Note)

Leak detection fiber FD-F705

The unique effect of capillarity enables reliable detection of small leaks and viscous liquids.

Detecting liquid presence within a pipe
(Note)

Liquid detection fiber FT-F902
Even if pipe diameters and thicknesses vary, the center of the beam axis always follows a straight line along the pipe, so that the setup environment has almost no effect on sensing.

Note: Use the FX-301-F amplifier that is specially designed for leak / liquid detection. For details, please refer to the 'sensor general catalog 2003-2004' or 'SUNX homepage' (http://www.sunx.co.jp/).

Light emitting amount selection function

FX-301 FX-301-HS FX-305
When sensing transparent objects and minute objects, the light emitting amount can be changed without changing the response time, even for cases where the incident light intensity is fully saturated, which was not possible with conventional models. This allows stable sensing to be maintained, and there is no longer any need to change the sensing range or change the fiber sensor as used to be required.

[Incident light intensity saturated]

[Stable sensing]

Comparison of saturation remedies

	Previous models	FX-301(-HS), FX-305
- Remedy	\square Problem	
- Changing response time	Mode selection \square Affects positioning precision	Light emitting amount selection
- Changing fiber	Change to thinner fiber to reduce light amount \square Cost and man-hour inefficiencies	function makes steps such as
- Changing setting position	Increase sensing range \square Man-hour and space inefficiencies	those at left unnecessary.

Fiber for glass substrate conveyor FD-L40 series, FR-WKZ11
Fibers are available which are ideal for glass substrate conveyor processes.

Alignment / Convergent reflective type FD-L43, FD-L45
Even glass substrates with $\pm 8^{\circ}$ (FD-L45: $\pm 6^{\circ}$) of flexure can be stably sensed.

- High flexure of $\pm 8^{\circ}$ (FD-L43)
- Long sensing range 30 mm 1.181 in (FD-L45)

Sensing glass substrate through a view port

Retroreflective type FR-WKZ11
A polarization filter allows accurate sensing of glass substrates that pass by the view port.

- Long sensing range 1.5 m 4.921 ft (when sensing glass substrates)

External data bank switching and teaching are possible External input unit fx-CH2

FX-301 FX-305
The FX-CH2 external input unit (optional) can be used to carry out teaching and data bank switching operations externally without needing to operate the digital fiber sensors directly. This is ideal for locations such as clean rooms where entry and exit of personnel are restricted.

Sensing glass substrate (stable sensing of minute differences)

When sensing transparent objects and extremely small objects, variations in the incident light intensity caused by external factors such as slippage of the beam axis due to vibration can result in incorrect operation.
In such cases, periodically setting limit teaching ' - ' can be used to ensure more stable sensing.
The FX-CH2 can be used to carry out teaching externally, so that teaching can be carried out much more easily in places where entry and exit of personnel are restricted.

(1) Carry out limit teaching ' - ' before the sensing object (glass substrate) arrives (while there is no sensing object present). When the shift value is set to 5% beforehand, the threshold value is set to a value that is at a level 5% lower than the incident light intensity during teaching.
(2) Even when sensing glass substrates with high degrees of transparency (low damping), stable sensing is possible without changes in the light amount due to external causes.

Upstream communication for reading data and teaching are also possible Upstream communication unit SC-GU1-485

(teaching or data bank switching) to the digital fiber sensors, and also a communication unit can be used for confirming incident light intensities and output statuses for the digital fiber sensors, which is ideal for equipment such as semiconductor manufacturing equipment in places where entry and exit of personnel are restricted.

High general compatibility so that any

Example of use in semiconductor cleaning process

<Touch screen monitor example>

Device A monitor			Menu		< Back	
Line 1	Line2	Line3		Line4 Incident light intensity Output		
Tank A	Liquid level detection sensor 1				00	O
	Liquid level defection sensor 2				00	O
Loader A	Passage confimation Sensor				50	0
	Mapping sensor					0

<Communicable commands>

- Sensor incident light intensity • Sensor settings verification
- Sensor output status - Threshold value settings, etc.

The sensor settings and operation can be confirmed on the touch screen, greatly improving ease of operation!

Ideal for workplaces such as semiconductor and LCD manufacturing lines where there are restrictions on operators entering and exiting

type of PLC can be used

RS-485 communication provides a high level of general compatibility so that any type of PLC can be used. Integration with existing systems is possible without the need to change PLCs.

Compatible with all PLCs equipped with RS-485 compatible units

Communication speed 57.6 kbps

High-speed communication at a maximum speed of 57.6 kbps allows the operator to instantly confirm information such as the incident light intensity and output statuses of the digital sensors.
Series connection of a maximum of 31 nodes is possible A maximum of 31 nodes can be connected in series. This is ideal for flexible handling when the sensors are to be installed in scattered locations or if more sensors are added.

Less wiring and installation work

Up to a maximum of 16 sensors can be connected side-by-side. Power can be supplied to all of them at once, so that less wiring and installation work is required. Wire-saving connectors also makes it possible to send output signals to the PLC in a single batch.

High-speed response $35 \mu \mathrm{~s}$

FX-301-HS
These digital fiber sensors have the fast response time of $35 \mu \mathrm{~s}$ They are ideal for sensing minute objects that are moving at high speeds.

Independent dual outputs

Two independent output channels are provided, so that one sensor can be used for control tasks that previously required two sensors. In addition, the second output channel can be used for alarm output and error output, so that ease of maintenance is improved.

Screw length discrimination
Distinguishing between
sensing objects A, B and C.

Output 1 and output 2 can be used together to distinguish between sensing objects A, B and C .

Sensing object A Sensing object B Sensing object C

$(3,000)$

※ A window comparator mode for distinguishing between sensing objects with single output is also available.

Interference prevention up to maximum of sixteen units

Interference prevention can be set for up to a maximum of 16 units, so that they can be used with confidence in locations where the fibers are installed in contact with each other. In addition, interference prevention for two fibers can be set during 65μ s ultra high-speed mode.

Mode	Interference prevention switching function			
	IP-1		IP-2	
	No. of units	Response time	No. of units	Response time
H-SP	2 units	$65 \mu \mathrm{~s}$	4 units	$130 \mu \mathrm{~s}$
FAST	4 units	$150 \mu \mathrm{~s}$	8 units	$300 \mu \mathrm{~s}$
STD	4 units	$250 \mu \mathrm{~s}$	8 units	$500 \mu \mathrm{~s}$
STDF	4 units	$700 \mu \mathrm{~s}$	8 units	1.4 ms
LONG	4 units	2.5 ms	8 units	5 ms
U-LG	8 units	4.5 ms	16 units	9 ms

For the FX-301/B/G/H, up to 4 units can be set.
The FX-301-HS is not equipped with an interference prevention function.

Improved ease of working! External data bank switching and teaching

FX-301 FX-305
The FX-CH2 external input unit (optional) can be used to carry out teaching and data bank switching operations externally without needing to operate the digital fiber sensors directly.
This is very convenient for equipment which requires frequent setup changes.

Wide beam fiber

FT-WA30/A30, FT-WA8/A8

It has a wide sensing width of 11 mm 0.433 in for the FT-WA8/A8 and 32 mm 1.260 in for the FT-WA30/A30 enabling long distance sensing of objects as far as $3,500 \mathrm{~mm} 137.795$ in (with the FX-301 in long range mode). Optimal for detecting unsteady works or small objects.

Finest spot fiber

An ultra-small $\phi 0.1 \mathrm{~mm} \phi 0.004$ in spot size has now been made possible by combining our precision fiber with our finest spot lens. The orientation of 0603 chips can also be discriminated stably.
Finest spot lens FX-MR6

Fiber model No.	Distance to focal point	Spot diameter			
FD-EG3	$7 \pm 0.5 \mathrm{~mm} 0.276 \pm 0.020 \mathrm{in}$	\$0.1 mm $\phi 0.004$ i approx.			
FD-EG2	$7 \pm 0.5 \mathrm{~mm} 0.276 \pm 0.020 \mathrm{in}$ Q	\$0.15 mm $\phi 0.006$ in approx.			
FD-EG1	$7 \pm 0.5 \mathrm{~mm} 0.276 \pm 0.020 \mathrm{in}$	$\phi 0.2 \mathrm{~mm} \phi 0.008$ i approx.		FD-EG2	$7 \pm 0.5 \mathrm{~mm} 0.276 \pm 0.020$ in $\phi 0.15 \mathrm{~mm} \phi 0.006$ in approx.
:---	:---				
FD-EG1	$7 \pm 0.5 \mathrm{~mm} 0.276 \pm 0.020$ in $\phi 0.2 \mathrm{~mm} \phi 0.008$ in approx.		FD-EG1	$\pm \pm 0.5 \mathrm{~mm} 0.276 \pm 0.020 \mathrm{in} ~$	$\phi .2 \mathrm{~mm} \phi 0.008$ in approx.
:---	:---	:---			
FD-WG4/G4/G6X/G6	$7 \pm 0.5 \mathrm{~mm} 0.276 \pm 0.020 \mathrm{in} \mid \phi 0.4 \mathrm{~mm} \phi 0.016$ in approx.				

Finest spot lens FX-MR3

Fiber model No.	Distance to focal point	Spot diameter

FD-EG3	$7.5 \pm 0.5 \mathrm{~mm} 0.295 \pm 0.020$ in $\phi 0.15 \mathrm{~mm} \phi 0.006$ in approx.
FD-EG2	$7.5 \pm 0.5 \mathrm{~mm} 0.295 \pm 0.020$ in $\phi 0.2 \mathrm{~mm} \phi 0.008$ in approx.

FD-EG2	$7.5 \pm 0.5 \mathrm{~mm} 0.295 \pm 0.020 \mathrm{in}$	$\phi 0.2 \mathrm{~mm} ~ \phi 0.008$ in approx.
FD-EG1	$7.5 \pm 0.5 \mathrm{~mm} 0.295 \pm 0.020 \mathrm{in}$	$\phi 0.3 \mathrm{~mm} \phi 0.012$ in approx.

FD-WG4/G4/G6X/G6 $7.5 \pm 0.5 \mathrm{~mm} 0.295 \pm 0.020$ in $\phi 0.5 \mathrm{~mm} \phi 0.020$ in approx.

FX-MR6 + FD-EG3

0603 chip orientation discrimination

IC pin sensing

Ultra small diameter fiber

FT-E12/E22, FD-E12/E22
Sleeve head diameter of 0.25 mm 0.010 in has been realized (FT-E12). This has improved the sensing capability for minute objects such as the 0603 chip.

Rectangular head fiber

FT-Z8 $\square / W Z 8$
The allowable bending radius is 4 mm 0.157 in (1 mm 0.039 in for the FT-WZ8 \square). This allows the fibers to be routed with great freedom and uses less space. Because it is installed with only two M2 screws, light beam axis alignment is easy. A front sensing type, side sensing type and top sensing type are provided.

Parts feeder surplus detection

Retrorefilective type fiber
FR-WKZ11, FR-KZ21/22
The lineup includes retroreflective type fibers which are ideal for sensing transparent objects.

With polarizing filters FR-WKZ11
This fiber has a compact head of W9.5 $\times \mathrm{H} 5.2 \times$ D15 mm W0. $374 \times \mathrm{H} 0.205 \times$ D0.591 in.
Equipped with allowable bending radius: R1 mm R0.039 in making it space efficient.

Chemical-resistant fiber

FT-Z802Y
With the case made of PFA (fluorine resin) and fiber sheath with PFA (fluorine resin), the fiber can be used with various types of chemical liquids.

Tough flexible fiber

FT-P81X, FD-P81X, FD-G6X
Stainless steel braiding protects the fiber cable and prevents fiber breakage due to snagging.

Strong stainless steel mesh protects fiber cables from breakage

ORDER GUIDE

Connector type amplifiers Quick-connection cable is not supplied with the amplifier. Please order it separately.

Type	Appearance	Model No.	Emitting element	Output		ick-connection	cables
					Type	Model No.	Length
		FX-301	Red LED	NPN open-collector transistor		CN-73-C1	1 m 3.281 ft
		FX-301P		PNP open-collector transistor			
		FX-301B	Blue LED	NPN open-collector transistor		CN-73-C2	2 m 6.562 ft
		FX-301BP		PNP open-collector transistor		CN-73-C5	5 m 16.404 ft
		FX-301G	Green LED	NPN open-collector transistor			
		FX-301GP		PNP open-collector transistor		CN-71-C1	1 m 3.281 ft
		FX-301H	Infrared LED	NPN open-collector transistor			
		FX-301HP		PNP open-collector transistor		CN-71-C2	2 m 6.562 ft
		FX-301-HS	Red LED	NPN open-collector transistor		CN-71-C5	5 m 16.404 ft
		FX-301P-HS		PNP open-collector transistor			
		FX-305	Red LED	NPN open-collector transistor		CN-74-C1	1 m 3.281 ft
						CN-74-C2	2 m 6.562 ft
						CN-74-C5	5 m 16.404 ft
		FX-305P		PNP open-collector transistor		CN-72-C1	1 m 3.281 ft
						CN-72-C2	2 m 6.562 ft
						CN-72-C5	5 mm 16.404 ft

ORDER GUIDE

Quick-connection cables
For FX-301(-HS)/B/G/H Quick-connection cable is not supplied with the amplifier. Please order it separately.

Type	Model No.	Description	
$\begin{aligned} & \text { Main cable } \\ & \text { (3-core) } \end{aligned}$	CN-73-C1	Length: 1 m 3.281 ft	$0.15 \mathrm{~mm}^{2} 3$-core cabtyre cable, with connector on one end Cable outer diameter: $\phi 3.0 \mathrm{~mm} \phi 0.118$ in
	CN-73-C2	Length: 2 m 6.562 ft	
	CN-73-C5	Length: 5 mm 16.404 ft	
$\begin{aligned} & \text { Sub cable } \\ & \text { (1-core) } \end{aligned}$	CN-71-C1	Length: 1 m 3.281 ft	$0.15 \mathrm{~mm}^{2} 1$-core cabtyre cable, with connector on one end Cable outer diameter: $\phi 3.0 \mathrm{~mm} \phi 0.118$ in
	CN-71-C2	Length: 2 mm 6.562 ft	
	CN-71-C5	Length: 5 mm 16.404 ft	

Sub cable

- CN-71-C \square

End plates End plates are not supplied with the amplifier. Please order them separately when the amplifiers are mounted in cascade.

Appearance	Model No.
Description	When cascading multiple amplifiers, or when it moves depending on the way it is installed on a DIN rail, these end plates ensure that all amplifiers are mounted together in a secure and fully connected manner.

OPTIONS

Designation	Model No.	Description
Amplifier mounting bracket	MS-DIN-2	Mounting bracket for amplifier
		10 sets of 2 communication window seals and 1 connector seal Communication window seal: It prevents malfunction due to transmission signal from another amplifier, as well as, prevents effect on another amplifier. Connector seal: It prevents contact of any metal, etc., with the pins of the quick- connection cable.
Fiber amplifier protective seal	FX-MB1	

Amplifier mounting bracket

- MS-DIN-2

Fiber amplifier protective seal

- FX-MB1

FX-305 / FX-301 (Red LED type) sensing range (Note 1)
Thru-beam type (one pair set)

Notes: 1) Refer to p. 27 for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
3) The minimum sensing object size is the value for red LED type. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition.

LIST OF FIBERS

Pliable fibers (flexible and sharp bending fibers) are marked with light blue in the table.

FX-305 / FX-301 (Red LED type) sensing range (Note 1)
Thru-beam type (one pair set)

The FX-305 and FX-301(-HS) have different sensing modes.
FX-305: H-SP, FAST, STD, STDF, LONG, U-LG (no S-D mode)

Notes: 1) Refer to p. 27 for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
3) The minimum sensing object size is the value for red LED type. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition.

FX-305 / FX-301 (Red LED type) sensing range (Note 1)
Thru-beam type (one pair set)

Notes: 1) Refer to p. 27 for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
3) The minimum sensing object size is the value for red LED type. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition.
4) The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long.

LIST OF FIBERS

FX-305 / FX-301 (Red LED type) sensing range (Note 1)

Thru-beam type (one pair set)

The FX-305 and $\mathbf{F X}$-301(-HS) have different sensing modes.
FX-305: H-SP, FAST, STD, STDF, LONG, U-LG (no S-D mode)
FX-301(-HS): S-D, H-SP, FAST, STD, LONG (no STDF or U-LG mode)

Notes: 1) Please contact our office for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
3) The minimum sensing object size is the value for red LED type. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition.
4) This is the fiber length (fixed length) for heat-resistant fibers. The ordinary-temperature fibers are free-cut to 2 m 6.562 ft .
5) The ordinary-temperature fiber is R25 mm R0.984 in or more
6) Heat-resistant joint fibers and ordinary-temperature fibers (FT-FM2) are sold as a set. Please refer to 'Heat-resistant joint fibers catalog' for details.
7) The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted.
8) Sold as a set comprising vacuum type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8). Please refer to 'Vacuum resistant fiber catalog' for details.

Model No. when ordering heat-resistant joint fibers individually as replacement parts

- FT-H20-J20 (one pair set) •FT-H20-J30 (one pair set) •FT-H2O-J50 (one pair set)
- FT-H20-VJ50 (one pair set)
- FT-H20-VJ80 (one pair set)

Model No. when ordering vacuum-resistant fibers individually as replacement parts

- Vacuum-resistant fiber
- Photo-terminal
FV-BR1 (one pair set)
- Fiber at atmospheric side
FT-H30-M1V (one pair set)
FT-J8 (one pair set)

FX-305 / FX-301 (Red LED type) sensing range (Note 1) Retroreflective type

Type	Shape of fiber head (mm in)	Sensing range (mm in)(Note 2, 3)	\square :U-LG :LONG ■AST : : H -SP :STD STD	Min. obje (Not	
	W0.5X55.2X015 W.0.34XH0205 X0.591\|			Cannot use $1001060033971018: 11$ Cannot use	$\begin{aligned} & \phi 0.3 \\ & \phi 0.0 \\ & \text { opaq } \end{aligned}$
		$\begin{array}{r} 2007.874 \\ 2007.874 \\ 2007.874 \\ 2007.874 \end{array}$	$\begin{array}{r} 2007.874 \\ 2007.874 \\ 2007.874 \end{array}$	$\begin{aligned} & \text { Horiz } \\ & \phi 5.5 \\ & \phi .0 .2 \\ & \text { opaqu } \\ & \text { Vertic } \\ & \phi 0.0 \\ & \phi .0 \\ & \text { opaqu } \end{aligned}$	
	W7.5XH2.2XD11.2 W0.295 X H0.087 X D0.441 W4 X H2 X D21.5 W0. 157 XH0.079 X D0. 846	15 to 3700.591 to 14.567 15 to 3300.591 to 12.992 15 to 2400.591 to 9.449 15 to 2100.591 to 8.268	15 to 1700.591 to 6.693 15 to 800.591 to 3.150 15 to 900.591 to 3.543	$\phi 0.1$ $\phi 0.0$ opaq	

Notes: 1) Please contact our office for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut. The sensing range of FR-WKZ11 is specified for the RF-13. The sensing range of FR-KZ21, FR-KZ21E and FR-KV1 is specified for the attached reflector.
3) The sensing range of FR-WKZ11 is the possible setting range for the reflector or reflective tape. The fiber can detect an object less than 100 mm 3.937 in away.
However, note that if there are any white or highly-reflective surfaces near the fiber head, reflected incident light may affect the fiber head. If this occurs, adjust the threshold value of the amplifier unit before use.
The sensing range of $\mathbf{F R - K Z 2 1 (E)}$ is the possible setting range for the reflector. However, if setting the fiber to detect objects passing within 0 to 20 mm 0 to 0.787 in from the fiber head, unstable detection may result.
The sensing range of FR-KV1 is the possible setting range for the reflector. The fiber can detect an object less than 15 mm 0.591 in away.
4) The minimum sensing object size is the value for red LED type.

The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition.

FX-305 / FX-301 (Red LED type) sensing range (Note 1)
Reflective type

Notes: 1) Refer to p. 27 for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.

2) The sensing range is specified for white non-glossy paper [$400 \times 400 \mathrm{~mm} 15.748 \times 15.748 \mathrm{in}$] as the object.
3) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
4) The minimum sensing object size is the value for red LED type at maximum sensitivity.

Note that the corresponding setting distance is different from the rated sensing distance.

FX-305 / FX-301 (Red LED type) sensing range (Note 1)
Reflective type

The FX-305 and FX-301(-HS) have different sensing modes.
FX-305: H-SP, FAST, STD, STDF, LONG, U-LG (no S-D mode)

		Shape of fiber head (mm in)	Sensing range (mm in)(Note 2, 3)		$\begin{aligned} &: \text { FAST } \\ & \square \text { H-SP } \\ &: S-D \end{aligned}$	Min. sensing object (Note 4)	Fiber cable length 8:Free-cut	Bending radius	Model No.
	\pm	M4	37014.567 27010.630 11006.693 1104.331	1853.346 451.772 391.535				25 mm	FD-T80
		$\begin{gathered} \text { M4 } \\ \text { - Ciffon } \end{gathered}$						84 in	FD-NFM2
		Sleeve 90 mm 3.543 in M4 		351.378 $=160.630$ 160.630				Fiber R25 mm R0. 984 in	FD-NFM2S
		Sleeve 40 mm 1.575 in M4 位						$\left\|\begin{array}{c} \text { Sleeve } \\ \text { R10 mm } \\ \text { R0.394 in } \end{array}\right\|$	FD-NFM2S4
		Sleeve 40 mm 1.575 in	401.575 301.181 180.709 150.591	$\begin{aligned} & 120.472 \\ & 4.50 .177 \\ & 150.197 \end{aligned}$		$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire	$\begin{aligned} & \circ \ll \\ & 2 \mathrm{~m} \end{aligned}$ $6.562 \mathrm{ft}$	Fiber R1 mm R0.039 in Sleeve R10 mm R0.394 in	FD-W44
		M4	2509.843 1907.480 903.543	602.362 250.984 321.260				$\begin{aligned} & R 1 \mathrm{~mm} \\ & \text { R0.039 in } \end{aligned}$	FD-WT8
		Coaxial • Lens mountable	653.346 652.559 321.457 321.260	250.984 100.394 110.433				$\begin{array}{\|l\|} \text { R2 } 2 \mathrm{~mm} \\ \text { R0.079 in } \end{array}$	FD-WG4
		M4	1505.906 1104.331 652.559 552.165	421.654 -150.591 -190.748				R25 mm R0.984 in	FD-G4
		M4		$\begin{gathered} 301.181 \\ 130.512 \\ 160.630 \end{gathered}$				$\begin{array}{\|l\|} \hline \text { R } 4 \mathrm{~mm} \\ \text { R0. } 157 \mathrm{in} \\ \text { Flexible } \end{array}$	FD-P60
	\sum^{m}		1405.512 90302023 451.772	351.378 160.630 -160.630				R25 mm R0.984 in	FD-T40
		$\begin{gathered} \text { M3 } \\ \text { Culthe } \end{gathered}$	401.575 301.181 180.709 150.591	$\begin{aligned} & 120.472 \\ & 4.50 .177 \\ & 50.197 \end{aligned}$		$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire	$\begin{gathered} 8 \times \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$	$\begin{array}{\|l\|} R 1 \mathrm{~mm} \\ R 0.039 \mathrm{in} \end{array}$	FD-WT4
		$\begin{array}{r} \text { M3 } \\ -4 B \end{array}$	501.969 361.417 200.787 180.709	$\begin{aligned} & 140.551 \\ & 5.50 .217 \\ & 60.236 \end{aligned}$				$\begin{array}{\|l\|} \hline \text { R } 4 \mathrm{~mm} \\ \text { R0.157 in } \\ \text { Flexible } \\ \hline \end{array}$	FD-P40
			1505.906 1104.331 652.559 552.165	421.654 -150.591 -190.748				R25 mm R0.984 in	FD-G6
			1505.906 481.890 4548 451.772	351.378 120.472 200.787				$\begin{array}{\|l\|} \mathrm{R} 10 \mathrm{~mm} \\ R 0.394 \mathrm{in} \end{array}$	FD-G6X
		Coaxial Lens mountable (FXXMR3, FX-MR6) \qquad M3 High precision	501.969 381.496 250.984 180.709	$\begin{aligned} & 140.551 \\ & 150.197 \\ & 60.236 \end{aligned}$			$\begin{gathered} 500 \mathrm{~mm} \\ 19.685 \mathrm{in} \end{gathered}$	$\begin{array}{\|l\|} \mathrm{R} 25 \mathrm{~mm} \\ \mathrm{RO} .984 \mathrm{in} \end{array}$	FD-EG1
			401.575 250.984 140.551 120.472	$\begin{array}{r} 90.354 \\ 130.118 \\ 150.197 \end{array}$		$\phi 0.04 \mathrm{~mm}$ $\phi 0.0016$ in gold wire		$\begin{aligned} & \text { R10 mm } \\ & \text { R0.394 in } \end{aligned}$	FD-EG2
			200.787 150.591 90.354 80.315	$\begin{aligned} & 50.197 \\ & 12.50 .098 \\ & 130.118 \end{aligned}$					FD-EG3
			6.50 .256 50.197 30.118	20.079 Cannot use Cannot use		$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire		R25 mm R0.984 in	FD-EN500S1
			501.969 381.496 200.787 180.709	$\begin{aligned} & 140.551 \\ & 50.197 \\ & 60.236 \end{aligned}$			$\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$		FD-ENM1S1

Notes: 1) Refer to p. 27 for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) The sensing range is specified for white non-glossy paper [200 $\times 200 \mathrm{~mm} 7.874 \times 7.874$ in (FD-T80, FD-WT8: $400 \times 400 \mathrm{~mm} 15.748 \times 15.748 \mathrm{in}$, FD-W44,

FD-WT4, FD-P40, FD-G6, FD-EG1, FD-EG2, FD-EG3, FD-EN500S1, FD-ENM1S1: $100 \times 100 \mathrm{~mm} 3.937 \times 3.937$ in)] as the object.
3) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
4) The minimum sensing object size is the value for red LED type at maximum sensitivity.

Note that the corresponding setting distance is different from the rated sensing distance.
5) The allowable cutting range is 700 mm 27.559 in from the end that the amplifier inserted

FX-305 / FX-301 (Red LED type) sensing range (Note 1)
Reflective type

Typ	pe	Shape of fiber head (mm in)	Sensing range (mm in)(Note 2, 3)		Min. sensing object (Note 4)	Fiber cable length \qquad	Bending radius	Model No.
	$\begin{aligned} & \infty \\ & \frac{\infty}{-} \\ & o \\ & \alpha \\ & \alpha_{2} \end{aligned}$	$\phi 3 \phi 0.118$	37014.567 127010.630 1106.693 104.331				$\left\lvert\, \begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \text { R0.984 in } \end{aligned}\right.$	FD-S80
		$\phi 3 \phi 0.118$	2509.843 1907.480 1104.331 903.543	602.362 250.984 321.260	$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire		$\begin{array}{\|l} \mathrm{R} 1 \mathrm{~mm} \\ \mathrm{R} 0.039 \mathrm{in} \end{array}$	FD-WS8
			652.55 .346 371.457 321.260	250.984 100.394 110.433			$\begin{aligned} & \text { R2 } \mathrm{mm} \\ & \text { R0.079 in } \end{aligned}$	FD-WSG4
		$\phi 3 \phi 0.118$		301.181 130.512 -160.630			$\begin{aligned} & \text { R4 } \mathrm{mm} \\ & \text { R0.157 in } \\ & \text { Flexible } \end{aligned}$	FD-P50
		$\begin{gathered} \phi 2.5 \\ \phi 0.098 \end{gathered}$	1405.512 602.362 451.772 4023	351.378 160.630 -160.630	$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire		$\left\lvert\, \begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \mathrm{R} 0.984 \mathrm{in} \end{aligned}\right.$	FD-SNFM2
	$\begin{gathered} \infty \\ ? ~ \\ ? ~ \end{gathered}$	\$1.5 00.059	501.969 30150 250.984	$\begin{aligned} & 190.748 \\ & 7.50 .295 \\ & 90.354 \end{aligned}$	$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire	$\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$	$\begin{aligned} & \text { R4 } \mathrm{mm} \\ & \text { R0.157 in } \\ & \text { Flexible } \end{aligned}$	FD-P2
		$\begin{gathered} \phi 1.5 \quad \phi 0.5 \\ \phi 0.059 \\ \hline \end{gathered}$ Sleeve part cannot be bent.	150.591 110.433 80.315 60.236	$\begin{aligned} & 40.157 \\ & 120.079 \\ & 10.039 \end{aligned}$	$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire	1 m	$\begin{array}{\|l} \mathrm{R} 10 \mathrm{~mm} \\ \mathrm{RO} 0.394 \mathrm{in} \end{array}$	FD-E12
			652.559 281.772 281.102 230.906	$\begin{aligned} & 170.669 \\ & 80.315 \\ & 170.276 \end{aligned}$	$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire	3.281 ft	R25 mm R0.984 in	FD-E22
			803.150 552.165 301.181 250.984	$\begin{aligned} & 170.669 \\ & 80.315 \\ & 90.354 \end{aligned}$			R25 mm R0.984 in	FD-V41
		Sleeve part cannot be bent.	200.787 150.591 8.50 .335 70.276	50.197 Cannot use Cannot use	$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire		$\begin{array}{\|l} \text { R1 mm } \\ \text { R0.039 in } \end{array}$	FD-WV42
			1706.693 $\quad 10035237$ 451.772	321.260 -150.591 -160.630			$\begin{array}{\|l} \mathrm{R} 25 \mathrm{~mm} \\ \mathrm{R} 0.984 \mathrm{in} \end{array}$	FD-SFM2SV2
			12 to 500.472 to 1.969 12.5 to 37.50 .492 to 1.476 15 to 360.591 to 1.417 15 to 350.591 to 1.378	16 to 290.630 to 1.142 Cannot use Cannot use	$\phi 0.3 \mathrm{~mm}$ $\phi 0.012$ in gold wire		$\left\lvert\, \begin{aligned} & \text { R25 mm } \\ & \text { R0.984 in } \end{aligned}\right.$	FD-L46
			0 to 500 to 1.969 0 to 360 to 1.417 0 to 330 to 1.299 0 to 300 to 1.181	0 to 300 to 1.181 0 to 150 to 0.591 0 to 210 to 0.827	(LCD glass)	$\begin{gathered} 8 \mathrm{c} \\ 3 \mathrm{~m} \\ 9.843 \mathrm{ft} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \mathrm{R} 4 \mathrm{~mm} \\ \mathrm{R} 0.157 \mathrm{in} \end{array}$	FD-L45
		Glass substrate detection • Alignment $\rightarrow 00 \int_{\text {W0669 }}^{\mathrm{W} 171.142 \times \mathrm{H} 29 \times 0.50}$	0 to 230 to 0.906					FD-L43
		Glass substrate detection Seating W12×H19×D3 W0.472×H0.748 \times D0. 1	10 to 8.20 to 0.323 0 to 70 to 0.276 0 to 6.50 to 0.256 0 to 60 to 0.236	0 to 5.70 to 0.224 0 to 50 to 0.197 0 to 5.20 to 0.205	$\begin{aligned} & \phi 0.03 \mathrm{~mm} \\ & \phi 0.0012 \text { in } \\ & \text { gold wire } \end{aligned}$	$\begin{aligned} & 8 \times \\ & 2 \mathrm{~m} \end{aligned}$	$\begin{array}{\|l} \mathrm{R} 10 \mathrm{~mm} \\ \mathrm{R} 0.394 \mathrm{in} \end{array}$	FD-L44
			$\begin{aligned} & 10 \text { to } 4.70 \text { to } 0.185 \\ & 0 \text { to } 4.50 \text { to } 0.177 \\ & 0 \text { to } 40 \text { to } 0.157 \\ & 0 \text { to } 40 \text { to } 0.157 \end{aligned}$	$\begin{aligned} & 0 \text { to } 3.80 \text { to } 0.150 \\ & 10 \text { to } 30 \text { to } 0.118 \\ & 10 \text { to } 3.50 \text { to } 0.138 \end{aligned}$				FD-L44S
		Glass substrate detection	6.5 to 14.50 .256 to 0.571 (Convergent point 80.315) 6.5 t 140.256 to 0.551 (Convergent point 80.315) 7 to 140.276 to 0.551 (Convergent point 80.315) 7 to 120.276 to 0.472 (Convergent point 80.315)	7.5 to 120.295 to0.472 (Convergent point 80.315) Cannot use Cannot use	\$ 1.9 mm $\phi 0.075$ in metal pipe (gray)		$\begin{array}{\|l} \text { R1 } \mathrm{mm} \\ \text { R0.039 in } \end{array}$	FD-WL41
		$\mathrm{W} 24 \times \mathrm{H} 21 \times \mathrm{D} 4$ W0.945 $\times \mathrm{H} 0.827 \times$ D0. 157	2 to 190.079 to 0.748 (Convergent point 80.315) 2.5 to 180.098 to 0.709 (Convergent point 80.315) 3 to 160.118 to 0.630 (Convergent point 80.315) 3 to 160.118 to 0.630 (Convergent point 80.315)	3.5 to 150.138 to 0.591 (Convergent point 80.315) Cannot use Cannot use	$\phi 0.06 \mathrm{~mm}$ $\phi 0.024$ in gold wire	$\begin{gathered} \&< \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$	$\begin{array}{\|l\|} \text { R10 } \mathrm{mm} \\ \text { RO. } 394 \mathrm{in} \end{array}$	FD-L41
		$\left\{\begin{array}{l}\text { W6 } \times \mathrm{H} 18 \times \mathrm{D} 14 \\ \mathrm{~W} .236 \times H 0.709 \times D 0.551\end{array}\right.$	2 to 200.079 to 0.787 (Convergent point 60.236) 2.5 to 180.098 to 0.709 (Convergent point 60.236) 4 to 120.157 to 0.472 (Convergent point 60.236) 4 to 120.157 to 0.472 (Convergent point 60.236)	4.5 to 110.177 to 0.433 (Convergent point 60.236$)$ 15 to 8.50 .197 to 0.3355 4.8 (Convergent point 9.50 .189 to 0.374 (Convergent point 60.2336$)$	$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire			FD-L4
			0.5 to 8.50 .020 to 0.335 0.5 to 7.50 .020 to 0.295 1 to 6.50 .039 to 0.256 1 to 5.50 .039 to 0.217	1 to 50.039 to 0.197 Cannot use Cannot use	$\phi 0.3 \mathrm{~mm}$ $\phi 0.012$ in copper wire	$\begin{gathered} 8< \\ 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$	$\begin{aligned} & \text { R1 mm } \\ & \text { R0.039 in } \end{aligned}$	FD-WL48

Notes: 1) Refer to p. 27 for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) The sensing range is specified for white non-glossy paper (FD-S80, FD-WS8: $400 \times 400 \mathrm{~mm} 15.748 \times 15.748 \mathrm{in}$, FD-WSG4, FD-P50, FD-SNFM2, FD-V41, FD-SFM2SV2: $200 \times 200 \mathrm{~mm} 7.874 \times 7.874 \mathrm{in}$, FD-P2, FD-E12, FD-E22, FD-WV42, FD-L4, FD-WL48: $100 \times 100 \mathrm{~mm} 3.937 \times 3.937 \mathrm{in}$, FD-L46: $100 \times 100 \times \mathrm{t} 0.7 \mathrm{~mm} 3.937 \times 3.937 \times \mathrm{t} 0.028$ in R edge of LCD glass substrates, FD-L43, FD-L44 and FD-L45: $100 \times 100 \times \mathrm{t} 0.7 \mathrm{~mm} 3.937 \times 3.937 \times$ $t 0.028$ in LCD glass substrates, FD-L44S: silicon wafers polished surface, FD-WL41, FD-L41: $100 \times 100 \times \mathrm{t} 2 \mathrm{~mm} 3.937 \times 3.937 \times \mathrm{t} 0.079$ in glass substrates $)$. 3) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
4) The minimum sensing object size is the value for red LED type at maximum sensitivity. Note that the corresponding setting distance is different from the rated sensing distance. However, with the covergent reflective type, when the sensitivity is at MAX., it is only possible to detect the minimum size of the sensing object at a distance corresponding to the convergent point.

The FX-305 and FX-301(-HS) have different sensing modes. FX-305: H-SP, FAST, STD, STDF, LONG, U-LG (no S-D mode) FX-301(-HS): S-D, H-SP, FAST, STD, LONG (no STDF or U-LG mode)
FX
otes: 1)

	ct	FX-301 (Red LE e type \qquad	ype) sensing range (Note 1)	$\begin{aligned} & \text { The FX-305 an } \\ & \text { FX-305: H-SP, } \\ & \text { FX- } 301(-H S): \end{aligned}$	d FX-301(-HS) FAST, STD, STD -D, H-SP, FAST	have differen F, LONG, L STD, LON	$\begin{aligned} & \text { t sensi } \\ & \text { LG (ne } \\ & \text { ino } \\ & \hline \end{aligned}$	modes. mode) or U-LG mode)
Type		Shape of fiber head (mm in)			Min. sensing object (Note 4)	Fiber cable length sx: Free-cut	Bending radius	Model No.
	$\begin{aligned} & \overline{\bar{\sigma}} \\ & \underset{\omega}{\bar{\omega}} \end{aligned}$	Front sensing	1 to 500.039 to 1.969 1.5 to 340.059 to 1.339 2 to 240.079 to 0.945 3 to 170.098 to 0.906	3 to 100.118 to 0.394 Cannot use Cannot use	$\phi 0.16 \mathrm{~mm}$ $\phi 0.006$ in copper wire	$\begin{gathered} c< \\ 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$	$\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$	FD-WZ4
			1 to 700.039 to 2.756 1 to 460.039 to 1.811 22.20 .039 to 1.268 2.5 to 230.098 to 0.906	2.5 to 150.098 to 0.591 3 to 70.118 to 0.276 3 to 70.118 to 0.276				$\begin{array}{r} \text { NEW } \\ \text { FD-WZ4HB } \end{array}$
		Front sensing W14XH7 X D3. 5 W0.551 XH0.276 X D0. 138	1204.724 1 to 8400.039 to 3.307 1 to 600.039 to 2.362	1.5 to 350.059 to 1.378 2.5 to 180.098 to 0.709 2.5 to 180.098 to 0.709	$\phi 0.03 \mathrm{~mm}$ $\phi 0.0012$ in gold wire	$\begin{gathered} 8< \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$		FD-WZ7
			0.5 to 2700.002 to 10.630 0.5 to 1800.002 to 7.087 1 to 1260.039 to 4.961 1 to 900.039 to 3.543	1 to 700.039 to 2.756 1 to 350.039 to 1.378 1 to 350.039 to 1.378				$\begin{array}{r} \text { NEW } \\ \text { FD-WZ7HB } \end{array}$
$\begin{aligned} & \overline{\widetilde{0}} \\ & \frac{0}{0} \\ & \dot{D} \end{aligned}$			20 to 6600.787 to 25.984 20 to 4800.787 to 18.898 20 to 3000.787 to 11.811 20 to 2300.787 to 9.055	20 to 1700.787 to 6.693 25 to 90 25 to 100084 to 3.543	$\begin{aligned} & \phi 0.3 \mathrm{~mm} \\ & \phi 0.012 \text { in } \\ & \text { copper wire } \end{aligned}$	$\begin{gathered} 8< \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$	$\begin{aligned} & \text { R1 } \mathrm{mm} \\ & \text { R0. } 089 \text { in } \end{aligned}$	FD-WKZ1
		W7 XH15 X D30 W0.276 X H0.591 XD1. 181	2309.055 2007.874 1505.906 1505.906	451.772 501.969	$\begin{aligned} & \phi 0.02 \mathrm{~mm} \\ & \phi 0.0008 \text { in } \\ & \text { gold wire } \end{aligned}$	$\begin{gathered} \frac{8<}{} \mathrm{m} \\ 6.562 \mathrm{ft} \end{gathered}$	$\begin{aligned} & \text { R25 mm } \\ & \text { R0.984 in } \end{aligned}$	FD-A15
	$\frac{\vec{\pi}}{\frac{\pi}{4}}$		29011.417 2208.661 1355.315 1104.331	783.071 351.378 391.535	$\begin{aligned} & \phi 0.02 \mathrm{~mm} \\ & \phi 0.0008 \text { in } \\ & \text { gold wire } \end{aligned}$	$\begin{gathered} \frac{g}{\circ} \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$	R25 mm R0.984 in	FD-AFM2 FD-AFM2E
					(Liquid)	$\begin{gathered} 8< \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \\ \text { (Note 5) } \end{gathered}$	Protective tube R40 mm R1.575 in Fiber R15 mm R0.591 in	FD-F8Y
			Applicable pipe diameter: Outer dia. $\phi 6$ to $\phi 26 \mathrm{~mm} \phi 0.236$ to $\phi 1.024$ in transparent pipe [PVC (vinyl chloride), fluorine resin, polycarbonate, acrylic, glass, wall thickness 1 to 3 mm 0.039 to 0.118 in]			$\begin{gathered} \& \mathrm{~m} \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$	$\begin{array}{\|l\|} \mathrm{R} 10 \mathrm{~mm} \\ \mathrm{R} 0.394 \mathrm{in} \end{array}$	FD-F41
		Mountable on pipe • For PFA, wall thickness 1 mm 0.039 in pipe $\mathrm{W} 25 \times \mathrm{H} 13 \times \mathrm{D} 20$ W0.984 X H0.512 X D0.787	Applicable pipe diameter: Outer dia. $\phi 6$ to $\phi 26 \mathrm{~mm} \phi 0.236$ to $\phi 1.024$ in transparent pipe [PFA (fluorine resin) or equivalently transparent pipe, wall thickness 1 mm 0.039 in]					FD-F4

Notes: 1) Refer to p .27 for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) The sensing range is specified for white non-glossy paper [200 $\times 200 \mathrm{~mm} 7.874 \times 7.874$ in (FD-WKZ1, FD-AFM2, FD-AFM2E: $400 \times 400 \mathrm{~mm} 15.478 \times 15.478$ in)] as the object.
3) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
4) The minimum sensing object size is the value for red LED type at maximum sensitivity. Note that the corresponding setting distance is different from the rated sensing distance.
5) The allowable cutting range is $1,000 \mathrm{~mm} 39.370$ in from the end that the amplifier inserted.

LIST OF FIBERS

FX-305 / FX-301 (Red LED type) sensing range (Note 1)
Reflective type

The FX-305 and FX-301(-HS) have different sensing modes.
FX-305: H-SP, FAST, STD, STDF, LONG, U-LG (no S-D mode)
FX-301(-HS):S-D, H-SP, FAST, STD, LONG (no STDF or U-LG mode)

		Shape of fiber head (mm in)	Sensing range (mm in)(Note 2, 3)		Min. sensing object (Note 4)	Fiber cable length s: Free-cut	Bending radius	Model No.
$\begin{aligned} & \text { - 증 } \\ & \text { © } \\ & \text { on } \end{aligned}$		$\begin{aligned} & 350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F} \cdot \text { Coaxial } \\ & \mathrm{M} 6 \text { anf } \end{aligned}$		 351.378 471.850	$\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire	$\begin{gathered} 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$	R25 mm R0.984 in	FD-H35-M2
		$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$. Sleeve 60 mm 2.362 in $\mathrm{M6}_{\mathrm{nnn}}^{\substack{\phi 2.8 \\ \phi 0.110}}$	$\begin{array}{r} 30011.811 \\ 27010.630 \\ 1505.96 \\ 1405.512 \end{array}$					FD-H35-M2S6
		$\begin{aligned} & 200^{\circ} \mathrm{C} 392^{\circ} \mathrm{F} \cdot \mathrm{Coaxial}^{\mathrm{M} 6} \\ & \mathrm{M} \\ & \hline \text { Hindmm } \end{aligned}$				$\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$	$\begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \mathrm{R} 0.984 \mathrm{in} \end{aligned}$	FD-H20-M1
			1907.480 1606.299 80 80.150 80.150	1572.244 -200.787 261.024				FD-H35-20S
		$\begin{aligned} & 200^{\circ} \mathrm{C} 392^{\circ} \mathrm{F} \cdot \mathrm{Coaxial} \\ & \mathrm{M} 4 \end{aligned}$	30011.811 27010.630 1505.96 1405.512	 351.378 471.850			R25 mmR0.984 in	FD-H20-21
				1 to 80.039 to 0.315 Cannot use 12 to 60.079 to 0.236		$\begin{gathered} 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$		FD-H30-L32
			0 to 20 0 to 15 0 to 10 0 to 100 to 0.394	1 to 80.039 to 0.315 Cannot use 12 to 60.079 to 0.236		$\begin{gathered} 8 \times \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$		FD-H18-L31
			41016.142 31012.205 2007.874 1405.512	1003.937 471.850				FD-H13-FM2
		$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ - Recfangular head W9.5 X H5. $2 \times$ D 15 W0.374 X H0.205 X D0.591$x \times x$ \square	20 to 3000.787 to 11.811 20 to 2000.787 to 7.874 20 to 1500.787 to 5.906 25 to 1300.984 to 5.118	Cannot use Cannot use	$\phi 0.8 \mathrm{~mm}$ $\phi 0.031$ in gold wire	$\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$	$\begin{aligned} & \mathrm{R} 18 \mathrm{~mm} \\ & \mathrm{R} 0.709 \mathrm{in} \end{aligned}$	FD-H30-KZ1V-S (Note 5)
			0 to 110 to 0.433 0 to 800 to 0.315 1.5 to 60.059 to 0.236 1.5 to 50.059 to 0.197	$\begin{aligned} & 2 \text { to } 40.079 \text { to } 0.157 \\ & \text { Cannot use } \\ & \text { Cannot use } \end{aligned}$		$\begin{gathered} 3 \mathrm{~m} \\ 9.843 \mathrm{ft} \end{gathered}$		FD-H30-L32V-S (Note 5)

Notes: 1) Refer to p. 27 for the sensing ranges for the FX-301-HS in H-SP mode and for the FX-301B/G/H.
2) The sensing range is specified for white non-glossy paper [$400 \times 400 \mathrm{~mm} 15.748 \times 15.748$ in (FD-H30-L32, FD-H18-L31: $50 \times 50 \mathrm{~mm} 1.969 \times 1.969 \mathrm{in}$ glass substrate, FD-H30-KZ1V-S, FD-H30-L32V-S: $100 \times 100 \times \mathrm{t} 0.7 \mathrm{~mm} 3.937 \times 3.937 \times \mathrm{t} 0.028$ in transparent glass)] as the object
3) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
4) The minimum sensing object size is the value for red LED type at maximum sensitivity. Note that the corresponding setting distance is different from the rated sensing distance.
5) Sold as a set comprising vacuum type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8). Please refer to 'Vacuum resistant fiber catalog' for details.

Model No. when ordering vacuum-resistant fibers individually as replacement parts

- Vacuum-resistant fiber
- Mounting bracket for FD-H30-KZ1V
- Photo-terminal

FV-BR1 (one pair set)

- Fiber at atmospheric side FT-J8 (one pair set)

MS-FD-2

Accessories (attached with fibers)
RF-003 (FR-KZ21/KZ21E exclusive mirror)
RF-13 (Reflective tape)
FX-CT1 (Fiber cutter)
FX-CT2 (Fiber cutter)
FX-AT2 (Attachment for fixed-length fiber, Orange)
FX-AT3 (Attachment for $\phi 2.2 \mathrm{~mm} \phi 0.087$ in fiber, Clear orange)
FX-AT4 (Attachment for $\phi 1 \mathrm{~mm} \phi 0.039$ in fiber, Black)
FX-AT5 (Attachment for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber, Gray)
FX-AT6 (Attachment for $\phi 1 \mathrm{~mm} \phi 0.039 \mathrm{in} / \phi 1.3 \mathrm{~mm} \phi 0.051$ in mixed fiber, Black / Gray)
If connecting to a fiber amplifier other than the FX-300 series
Applicable fiber amplifiers: FX2 / FX3 series
FX-AT10 (Attachment for $\phi 1 \mathrm{~mm} \phi 0.039$ in fiber)
FX-AT13 (Attachment for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber)
FX-AT15 (Attachment for $\phi 1 \mathrm{~mm} \phi 0.039$ in $/ \phi 1.3 \mathrm{~mm} \phi 0.051$ in mixed fiber)

LIST OF SENSING RANGE FOR FX-301(P)-HS•FX-301B/G/H

Sensing range for ultra high-speed type FX-301(P)-HS in H-SP mode (35 $\mu \mathrm{s}$)(Typical model)

8	Fiber model No.	Sensing range (mm in) (Note)
	FT-B8	1606.299
	FT-FM2	1204.724
	FT-NFM2	401.575
	FT-E12	20.079
	FT-E22	100.394

\checkmark	Fiber model No.	Sensing range (mm in) (Note)
	FD-B8	602.362
	FD-FM2	351.378
	FD-NFM2	140.551
	FD-E12	10.039
	FD-E22	50.197

Note: The sensing ranges are in H-SP mode. The sensing ranges in FAST, STD, S-D and LONG modes are the same as for the FX-301. (Refer to p.18~)
Sensing range for FX-301B/G/H (Typical model)
(mm in)

		Thru-beam type										
		FT-B8	FT-FM2	FT-NFM2	FT-V10	FT-W8	FT-Z8	FT-P80	FT-A30	FT-A8	FT-E12	FT-E22
FX-301B	LONG	2208.661	1505.906	501.969	40015.748	903.543	1204.724	1305.118	2,400 94.488	60023.622	30.118	140.551
	STD	1104.331	752.953	250.984	2007.874	451.772	602.362	652.559	1,200 47.244	30011.811	20.079	70.276
	FAST	752.953	401.575	160.630	1305.118	301.181	401.575	451.772	70027.559	2208.661	10.039	40.157
FX-301G	LONG	1104.331	702.756	240.945	2007.874	562.205	602.362	702.756	1,200 47.244	30011.811	10.039	60.236
	STD	552.165	351.378	120.472	1003.937	281.102	301.181	351.378	60023.622	$150 \quad 5.906$	-	30.118
	FAST	401.575	240.945	80.315	$65 \quad 2.559$	200.787	220.866	250.984	35013.780	$110 \quad 4.331$	-	20.079
$\underset{\text { (Note) }}{\text { FX-301H }}$	LONG	1003.937	501.969	160.630	1505.906	421.654	461.811	562.205	80031.496	2208.661	40.157	100.394
	STD	501.969	250.984	80.315	$75 \quad 2.953$	210.827	230.906	281.102	40015.748	$110 \quad 4.331$	20.079	50.197
	FAST	301.181	180.709	50.197	$40 \quad 1.575$	150.591	160.630	200.787	2409.449	$80 \quad 3.150$	1.50 .059	30.118

Note: Infrared types are easily affected by humidity, so if using them in environments with high humidity or where the humidity fluctuates, please contact our office.
(mm in)

		Reflective type										
		FD-B8	FD-FM2	FD-NFM2	FD-W8	FD-P80	FD-AFM2	FD-G4	FD-EG1	FD-E12	FD-E22	FD-G6X
FX-301B	LONG	803.150	461.811	160.630	230.906	401.575	401.575	220.866	60.236	20.079	60.236	220.866
	STD	401.575	230.906	80.315	110.433	200.787	200.787	110.433	30.118	10.039	30.118	110.433
	FAST	261.024	150.591	50.197	80.315	130.512	130.512	80.315	20.079	\square	20.079	60.236
FX-301G	LONG	421.654	240.945	80.315	140.551	200.787	180.709	120.472	30.118	10.039	30.118	120.472
	STD	210.827	120.472	40.157	70.276	100.394	90.354	60.236	1.50 .059	-	1.50 .059	60.236
	FAST	140.551	80.315	20.079	40.157	70.276	50.197	40.157	10.039	-	10.039	40.157
$\underset{\text { (Note) }}{\text { FX-301H }}$	LONG	261.024	200.787	60.236	110.433	180.709	120.472	70.276	100.394	10.039	60.236	180.709
	STD	130.512	100.394	30.118	5.50 .217	90.354	60.236	3.50 .138	50.197	-	30.118	90.354
	FAST	90.354	70.276	20.079	30.118	60.236	40.157	20.079	30.118	-	20.079	50.197

Note: Infrared types are easily affected by humidity, so if using them in environments with high humidity or where the humidity fluctuates, please contact our office.

Sensing range when using in combination with FR-WKZ11 reflector (optional)

The sensing ranges are the values for FX-305 / FX-301 infrared types.
(mm in)
RF-230 100 to $3,2003.937$ to 125.984 (LONG), 100 to $2,0003.937$ to 78.740 (STD), 100 to $1,6003.937$ to 62.992 (FAST), 100 to $1,0003.937$ to 39.370 (S-D)
RF-220 100 to $2,4003.937$ to 94.488 (LONG), 100 to $1,3003.937$ to 51.181 (STD), 100 to $1,0003.937$ to 39.370 (FAST), 100 to 6003.937 to 23.622 (S-D)
RF-210 100 to $1,1003.937$ to 43.307 (LONG), 100 to 7003.937 to 27.559 (STD), 100 to 5503.937 to 21.654 (FAST), 100 to 3003.937 to 11.811 (S-D)
Note: The sensing range indicates the allowable setting range for the reflector. The fiber head can detect objects at distances of 100 mm 3.937 in or less.
However, note that if there are any white or highly-reflective surfaces near the fiber head, reflected incident light may affect the fiber head. If this occurs, adjust the threshold value of the amplifier before use.

FIBER OPTIONS

Lens (For thru-beam type fiber)

Designation		Model No.	Description									
	Expansion lens (Note 1)	FX-LE1		Increases the sensing range by 5 times or more. - Ambient temperature: $-60 \text { to }+350^{\circ} \mathrm{C}$ $-76 \text { to }+662^{\circ} \mathrm{F}$	Sensing ra	nge for	red LED	type (m	m) [Len	s on bot	h sides]	(Note 3)
					Fiber Mode	U-LG	LONG	STDF	STD	FAST	S-D	H-SP
					FT-B8	3,500 (xe2]	3,500	3,000	2,500	2,000	1,000	1,000
					FT-FM2	3,500 (142)2	3,500 1 wid 2	3,500 1 wid 2	3,500 wixez	2,500	1,300	1,000
					FT-T80	3,500 (162)	3,500	3,500 (1022)	3,500 wixaz	2,500	1,300	1,000
					FT-R80	3,500 weze7	3,500	3,500	2,300	1,600	800	750
					FT-W8	3,500 (1022	3,500 1 cata	3,500	2,900	2,000	1,000	900
					FT-P80	3,500 (1at2)	3,500	3,500	3,500 weaz	2,500	1,100	1,000
					FT-P60	3,500 (meze2	3,500	3,500	3,500 wezal	1,500	900	800
					FT-P81X	1,600 watez	1,600 (1020		$\frac{1,600}{}$ wivez	1,600 (1atar	1,100	950 700
					FT-H20W-M1	1,600 mezal	1,600	1,600	1,300	900	500	700
					FT-H20-M1	1,600 waza)	1,600 (mas)	1,600 (102)	1,600 wixaz	1,100	900	600
	Superexpansion lens (Note 1)	FX-LE2		Tremendously increases the sensing range with large diameter lenses. - Ambient temperature: $\begin{aligned} & -60 \text { to }+350^{\circ} \mathrm{C} \\ & -76 \text { to }+662^{\circ} \mathrm{F} \end{aligned}$	Sensing range for red LED type (mm) [Lens on both sides] (Note 3)							
					Fiber Mode	U-LG	LONG	STDF	STD	FAST	S-D	H-SP
					FT-B8	3,500 was)	3,500 me2a	3,500 wrez	3,500 wrez	3,500	3,500 (1ata	3,500 watz
					FT-FM2 FT-R80	$\frac{3,500 \text { wase }}{3,500}$	3,500 mex	3,500 mextz	$\frac{3,500}{}$ wextz	3,500 (exz2	3,500 (12023	3,500 wataz
			\%		\|F-R80	3,500 wasz ${ }^{3,500}$	3,500	3,500 (1atzez	3,500 1 lezz 2	3,500 (12423	3,500 (1423	
					FT-P80	3,500 wasz]	3,500	3,500	3,500 wezz	3,500	3,500	3,500 wez ${ }^{\text {a }}$
					FT-P60 FTP81X	3,500 Matal	3,500 mata	3,500 werz	3,500 weza	3,500 me2	3,500 meza	3,500 witaz
					FT-P81X FT-H35-M2	1,600 wase	1,600 ${ }_{\text {me2 } 2}$	1,600 wezt	1,600 watar	1,600 meal	1,600 meaz	1,600 watz
					FT-H35-M2	3,500 160	$\frac{3,500}{1,600}$	3,500 1 wezz	3,500 1 wezz	3,500 1 mer 1	3,500 1 (taza	3,500 meaz
					FT-H20W-M1 FT-H20-M1	1,600 wasz	1,600 1,600 (exaz			1,600 1,600 (tay2	1,500	1,600 wataz
					FT-H13-FM2	3,500 was2]	3,500 mexa	3,500 wrezz	3,500 wezz	3,500 (meaz	3,500 (meaz	3,500 watz
	Side-view lens	FX-SV1		Beam axis is bent by 90°. - Ambient temperature: $\begin{aligned} & -60 \text { to }+300^{\circ} \mathrm{C} \\ & -76 \text { to }+572^{\circ} \mathrm{F} \end{aligned}$	Sensing range for red LED type (mm) [Lens on both sides] (Note 3)							
								er Mode	LONG	STD	FAST	S-D
									1,100	530	400	186
								-FM2	1,200	600	440	210
								-T80	1,200	600	440	210
								-W8	900	450	330	160
								-P80	1,200	600	440	210
								-P60	650	300	200	130
								-P81X	1,200	600	440	200 90
								H20W-M1	310	140	100	50
								-H20-M1	550	280	200	90
	Expansion		1	Sensing range increases by	Sensing ra	nge for red	d LED	type (mm)) [Lens	n both	sides] (N	Note 3, 4)
	lens for vacuum fiber	FV-LE1		10 times or more. - Ambient temperature.	Fiber Mode	U-LG	LONG	STDF	STD	FAST	S-D	H-SP
	(Note 1)		∞	$-40 \text { to }+120^{\circ} \mathrm{C}-40 \text { to }+248^{\circ} \mathrm{F}$	FT-H30-M1V	1,600	1,200	650	450	300	150	200

Notes: 1) Be careful when installing the thru-beam type fiber equipped with the expansion lens, as the beam envelope becomes narrow and alignment is difficult. Especially when installing a fiber with many cores (sharp bending fibers and heat-resistant glass fiber), please be sure to use it only after you have adjusted it sufficiently
2) The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long (FT-H20W-M1, FT-P81X and FT-H20-M1: 1,600 mm 62.992 in).
3) The sensing ranges are the values for red LED type amplifier. Please contact our office for details on sensing ranges for other types of amplifiers.
4) The fiber cable length for the FT-H30-M1V is 1 m 3.281 ft . The sensing ranges in U-LG and LONG modes take into account the length of the FT-J8 atmospheric side fiber.
Lens (For reflective type fiber)

Designation		Model No.	Description				
	Pinpoint spot lens	FX-MR1		Pinpoint spot of $\phi 0.5 \mathrm{~mm} \phi 0.020 \mathrm{in}$. Enable - Distance to focal point: $6 \pm 1 \mathrm{~mm} 0.236 \pm$ - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}$	$\begin{aligned} & \text { s detection of mi } \\ & 0.039 \text { in } \quad \cdot \mathrm{A} \\ & 40 \text { to }+158^{\circ} \mathrm{F} \end{aligned}$	inute objects or s pplicable fibers:	mall marks. FD-WG4, FD-G4
	Zoom lens	FX-MR2		The spot diameter is adjustable from $\phi 0.7 \mathrm{~mm}$ to $\phi 2 \mathrm{~mm} \phi 0.028$ in to $\phi 0.079$ in according to how much the fiber is screwed in. - Applicable fibers: FD-WG4, FD-G4 - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158{ }^{\circ} \mathrm{F}$ - Accessory: MS-EX-3 (mounting bracket)	ensing rang	for red LED	ype (Note)
					Screw-in depth	Distance to focal point	Spot diameter
					7 mm	18.5 mm approx.	$\phi 0.7 \mathrm{~mm}$
					12 mm	27 mm approx.	$\phi 1.2 \mathrm{~mm}$
					14 mm	43 mm approx.	$\phi 2.0 \mathrm{~mm}$
	Finest spot lens	FX-MR3	㗊	Extremely fine spot of $\phi 0.3 \mathrm{~mm} \phi 0.012$ in approx. achieved. - Applicable fibers: FD-WG4, FD-G4, FD-EG1, FD-EG2, FD-EG3, FD-G6X, FD-G6 - Ambient temperature: $-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+158^{\circ} \mathrm{F}$	Sensing range for red LED type (Note)		
					Fiber model No.	Distance to focal point	Spot diameter
					FD-EG3	$7.5 \pm 0.5 \mathrm{~mm}$	$\phi 0.15 \mathrm{~mm}$ approx.
					FD-EG2	$7.5 \pm 0.5 \mathrm{~mm}$	$\phi 0.2 \mathrm{~mm}$ approx.
					FD-EG1 FD-WG4/G4/G6X/G6	$\frac{7.5 \pm 0.5 \mathrm{~mm}}{7.5 \pm 0.5 \mathrm{~mm}}$	$\phi 0.3 \mathrm{~mm}$ approx. $\phi 0.5 \mathrm{~mm}$ approx.
	Finest spot lens	FX-MR6		Extremely fine spot of $\phi 0.1 \mathrm{~mm} \phi 0.004$ in approx. achieved. - Applicable fibers: FD-WG4, FD-G4, FD-EG1, FD-EG2, FD-EG3, FD-G6X, FD-G6 - Ambient temperature: -20 to $+60^{\circ} \mathrm{C}-4$ to $+140^{\circ} \mathrm{F}$	Sensing range for red LED type (Note)		
					Fiber model No.	Distance to focal point	Spot diameter
					FD-EG3	$7 \pm 0.5 \mathrm{~mm}$	$\phi 0.1 \mathrm{~mm}$ approx.
					FD-EG2	$7 \pm 0.5 \mathrm{~mm}$	$\phi 0.15 \mathrm{~mm}$ approx.
					FD-EG1	$7 \pm 0.5 \mathrm{~mm}$	$\phi 0.2 \mathrm{~mm}$ approx.
					FD-WG4/G4/G6X/G6	$7 \pm 0.5 \mathrm{~mm}$	$\phi 0.4 \mathrm{~mm}$ approx.
	Zoom lens$\binom{\text { Side-view }}{\text { type }}$	FX-MR5		FX-MR2 is converted into a side-view type Sensing range for red LED type (Note) and can be mounted in a very small			
				space.	Screw-in depth	Distance to focal point	Spot diameter
				- Applicable fibers: FD-WG4, FD-G4	8 mm	13 mm approx.	$\phi 0.5 \mathrm{~mm}$
				- Ambient temperature:	10 mm	15 mm approx.	$\phi 0.8 \mathrm{~mm}$
				-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$	14 mm	30 mm approx.	$\phi 3.0 \mathrm{~mm}$

[^0]FIBER OPTIONS

Note: Do not bend the sleeve part of any side-view type fiber or ultra-small diameter head type fiber.

Fiber attachment

It's possible to simultaneously cut two fibers to the same length

Each fiber (with some exceptions) has a newly developed two-in-one fiber attachment (FX-AT3/AT4/AT5/AT6) which enables two fibers to be cut simultaneously to the same length with the new fiber cutter (FX-CT2). Also, since the fibers can be attached to the amplifier while being fixed in position in the two-in-one fiber attachment, sensitivity changes resulting from variation in the amount of fiber insertion do

Protective tube

Fiber bender

- FB-1

Fiber cutter

Universal sensor mounting stand Using the arm which enables adjustment in the horizontal direction, sensing can also be done from above an assembly line.

FX-AT2

FX-AT3

FX-AT4/AT5/AT6 not occur.

Guide to interchanging fiber length and sleeve length

Custom-ordered products are available with different fiber lengths and sleeve lengths in order to respond quickly to different requirements.

Custom-ordered product (Typical)

-Fiber length can be set up to 30 m 98.425 ft in units of 1 m 3.281 ft FT-B8, FT-AFM2 etc.

- Sleeve length can be set up to 12 cm 4.724 in units of 1 cm 0.394 in $\cdots \cdots$. FT-FM2S4, FD-NFM2S4 etc.

	Type		Standard type				High-speed type	High-function type
			Red LED	Blue LED	Green LED	Infrared LED		
	2	NPN output	FX-301	FX-301B	FX-301G	FX-301H	FX-301-HS	FX-305
		PNP output	FX-301P	FX-301BP	FX-301GP	FX-301HP	FX-301P-HS	FX-305P
Supply voltage			12 to 24 V DC $\pm 10 \%$				Ripple P-P 10% or less	
Power consumption			<Red LED / Infrared LED type> Normal operation: 960 mW or less (Current consumption 40 mA or less at 24 V supply voltage) ECO mode: 600 mW or less (Current consumption 25 mA or less at 24 V supply voltage)				<Blue LED / Green LED type> Normal operation: 720 mW or less (Current consumption 30 mA or less at 24 V supply voltage) ECO mode: 430 mW or less (Current consumption 18 mA or less at 24 V supply voltage)	
Output			<NPN output type> NPN open-collector transistor - Maximum sink current:100 mA (50 mA , if five, or more, amplifiers are connected in cascade.) - Applied voltage: 30 V DC or less (between output and 0 V) - Residual voliage: 1.5 V or less [at 100 mA (at 50 mA , if five, or more, amplifiers are connected in cascade) sink current.] <PNP output type> PNP open-collector transistor - Maximum source current: 100 mA (50 mA , if five, or more, amplifiers are connected in cascade.) - Applied voltage: 30 V DC or less (between output and +V) - Residual volage: 1.5 V or less [at 100 mA (at 50 mA , if five, or more, amplifiers are connected in cascade) source current.]					<NPN output type> NPN open-collector transistor 2 outputs - Maximum sink current: 50 mA each (Note 1) - Applied voltage: 30 V DC or less (between output and 0 V) - Residual voltage: 1.5 V or less [at 50 mA (Note 1)] <PNP output type> PNP open-collector transistor 2 outputs - Maximum source current: 50 mA each (Note 1) - Applied voltage: 30 V DC or less (between output and +V) - Residual voltage: 1.5 V or less [at 50 mA (Note 1)]
Output operation			Selectable either Light-ON or Dark-ON, with jog switch					
Short-circuit protection			Incorporated					
Response time			65μ s or less [H-SP (Red LED type only)], $150 \mu \mathrm{~s}$ or less (FAST), 250μ s or less [STD / S-D (Red LED type only)], 2 ms or less (LONG), selectable with jog switch				35μ or less (H-SP), $150 \mu \mathrm{~s}$ or less (FAST), 250μ sorless (STD / S-D), 2 ms or less (LONG), selectable with jog switch	65μ s or less (H-SP), $150 \mu \mathrm{~s}$ or less (FAST), 250μ s or less (STD), 700μ s or less (STDF), 2.5 ms or less (LONG), 4.5 ms or less (U-LG), selectable with jog switch
Sensitivity setting			2-level teaching / Limit teaching / Manual adjustment / Full-auto teaching / Max. sensitivity teaching					Normal mode: 2-level teaching / Limit teaching / Full-auto teaching / Max. sensitivity teaching / Manual adjustment Window comparator mode: Teaching (1-level/ 2-level/ 3--evel)/ Manual adiustment
Operation indicator			Orange LED (lights up when the output is ON)					
Stability indicator			Green LED (lights up under stable light received condition or stable dark condition)					
MODE indicator			RUN: Green LED, TEACH • ADJ • L/D ON • TIMER • PRO:Yellow LED					
Digital display			4 digit red LED display					
Fine sensitivity adjustment function			Incorporated					
Timer function			Incorporated with variable ON-delay / OFF-delay / ONE-SHOT timer, switchable either effective or ineffective. $\left[\begin{array}{l}\text { Timer period: Red LED type; } 0.5 \mathrm{~ms} \text { approx., } 1 \mathrm{~ms} \text { to } 9999 \mathrm{~ms} \\ \text { (Blue LED, Green LED, Infrared LED type; approx. } 0.5 \mathrm{~ms} \text { to } 500 \mathrm{~ms})\end{array}\right]$					Incorporated with variable ON-delay / OFF-delay / ONE-SHOT / ON-delay • OFF-delay / ON-delay • ONESHOT timer, switchable either effective or ineffective. (Timer period: Output $1 ; 0.5 \mathrm{~ms}, 1 \mathrm{~ms}$ to 0999 ms , Output $2 ;$; $0.5 \mathrm{~ms}, 1 \mathrm{~ms}$ t 0500 ms)
Light emitting amount selection function			Incorporated (Red LED type only)(Note 2) FAST, STD, LONG: 4 level, H-SP: 3 level, S-D: 2 level				Incorporated (Note 2) FAST, STD, LONG: 4level H-SP, S-D: 2 level	Incorporated (Note 2) FAST, STD, STDF, LONG, U-LG: 4 level H-SP: 3 level
Automatic interference prevention function			Incorporated (Up to four sets of fiber heads can be mounted close together. However, H-SP mode is 2 fiber heads.)(Note 3)					Incorporated [Up to four sets of fiber heads can be mounted close together. (However, U-LG mode is 8 fiber heads, H-SP mode is 2 fiber heads.)] (Note 4)
	Ambient temperature		-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ (If 4 to 7 units are connected in cascade: -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$, if 8 to 16 units are connected in cascade: -10 to $+45^{\circ} \mathrm{C}+14$ to $+113^{\circ} \mathrm{F}$ (No dew condensation or icing allowed), Storage: -20 to $+70^{\circ} \mathrm{C}-4$ to $+158^{\circ} \mathrm{F}$					
	Ambient humidity		35 to 85 \% RH, Storage: 35 to 85 \% RH					
	Ambient illuminance		Sunlight: $10,000 \mathrm{~lx}$ at the light-receiving face, Incandescent light: $3,000 \mathrm{~lx}$ at the light-receiving face					
	Voltage withstandability		$1,000 \mathrm{VAC}$ for one min. between all supply terminals connected together and enclosure (Note 5)					
	Insulation resistance		$20 \mathrm{M} \Omega$, or more, with 250 V DC megger between all supply terminals connected together and enclosure (Note 5)					
	Vibration resistance		10 to 150 Hz frequency, 0.75 mm 0.030 in amplitude in X, Y and Z directions for two hours each					
	Shock resistanc		$98 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (10 G approx.) in X, Y and Z directions for five times each					
Emitting element (modulated)			Red LED	Blue LED	Green LED	Infrared LED	Red LED	Red LED
Material			Enclosure: Heat-resistant ABS, Case cover: Polycarbonate, MODE key: Acrylic, Jog switch: Heat-resistant ABS (FX-301B/G/H: Acrylic)					
Connecting method			Connector (Note 6)					
Cable extension			Extension up to total 100 m 328.084 ft (50 m 164.042 ft for 5 to $8 \mathrm{units}, 20 \mathrm{~m} 65.617 \mathrm{ft}$ for 9 to 16 units) is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable.					
Weight			Net weight: 20 g approx., Gross weight: 25 g approx.					

Notes: 1) 50 mA per output. 25 mA if five, or more, amplifiers are connected in cascade.
2) The light emitting amount can be zero (emission halt) in all modes.
3) When the power supply is switched on, the light emission timing is automatically set for interference prevention.
4) When the interference prevention function ' $\$$ ' ${ }^{2}$ ' is set, the number of mountable fiber heads becomes double. Furthermore, take care that the response time also becomes double.
5) The voltage withstandability and the insulation resistance values given in the above table are for the amplifier only.
6) The cable for amplifier connection is not supplied as an accessory. Make sure to use the optional quick-connection cables given below.

Main cable (3 -core) for $\mathbf{F X}-\mathbf{3 0 1}(\mathbf{P})(-\mathrm{HS})$: CN-73-C1 (Cable length 1 m 3.281 ft), CN-73-C2 (Cable length 2 m 6.562 ft), CN-73-C5 (Cable length 5 m 16.404 ft$)$ Sub cable (1-core) for FX-301(P)(-HS): CN-71-C1 (Cable length 1 m 3.281 ft), CN-71-C2 (Cable length 2 m 6.562 ft), CN-71-C5 (Cable length 5 m 16.404 ft) Main cable (4-core) for FX-305(P): CN-74-C1 (Cable length 1 m 3.281 ft), CN-74-C2 (Cable length 2 m 6.562 ft), CN-74-C5 (Cable length 5 m 16.404 ft$)$ Sub cable (2-core) for FX-305(P): CN-72-C1 (Cable length 1 m 3.281 ft), $\mathbf{C N}-\mathbf{7 2 - C 2}$ (Cable length 2 m 6.562 ft), CN-72-C5 (Cable length 5 m 16.404 ft)

FX-301(-HS) NPN output type

Notes: 1) The quick-connection sub cable does not have +V (brown) and 0 V (blue). The power is supplied from the connector of the main cable.
2) 50 mA max., if five amplifiers, or more, are connected together.

Symbols \ldots
ZD: Reverse supply polarity protection diode
$\mathrm{Tr}:$ NPN output transistor

FX-301P(-HS) PNP output type

Notes: 1) The quick-connection sub cable does not have +V (brown) and 0 V (blue). The power is supplied from the connector of the main cable.
2) 50 mA max., if five amplifiers, or more, are connected together.
Symbols $\ldots \mathrm{D}:$ Reverse supply polarity protection diode

$\mathrm{ZD}:$ Surge absorption zener diode

$\mathrm{Tr}:$: PNP output transistor

PRECAUTIONS FOR PROPER USE

This product is not a safety sensor. Its use is not intended or designed to protect life and prevent body injury or property damage from dangerous parts of machinery. It is a normal object detection sensor.

Part description

Notes: 1) FX-305(P); Output 1 operation indicator (Orange)
2) FX-305(P); Output 2 operation indicator (Orange)

FX-305 NPN output type

Notes: 1) The quick-connection sub cable does not have +V (brown) and 0 V (blue). The power is supplied from the connector of the main cable.
2) 25 mA max., if five amplifiers, or more, are connected together

Symbols ... D: Reverse supply polarity protection diode ZD1, ZD2: Surge absorption zener diode

 Tr1, Tr2 : NPN output transistor
FX-305P PNP output type

Notes: 1) The quick-connection sub cable does not have +V (brown) and 0 V (blue). The power is supplied from the connector of the main cable.
2) 25 mA max., if five amplifiers, or more, are connected together

Symbols \ldots D: Reverse supply polarity protection diode
ZD1, ZD2: Surge absorption zener diode
Tr1, Tr2 : PNP output transistor

Refer to the 'Sensor general catalog 2003-2004' for fiber precautions.

Operation procedure

-When the power supply is switched on, communication self-check is carried out and normal condition is displayed [MODE indicator / RUN (green) lights up and the digital display shows incident light intensity].

- When MODE key is pressed, the mode changes as per the diagram below.

For FX-305(P)
The FX-305 is equipped with two independent outputs, but the items that can be set in output 1 and output 2 respectively are only the following.
The items other than those are common.
(1) Threshold value (2) Output operation
(3) Timer operation and Timer period (4) Sensing mode

Teaching

- The threshold values can be set by normal mode (2-level teaching, limit teaching or full-auto teaching) or window comparator mode (1-level / 2-level / 3-level teaching) [FX-305(P) only], when the MODE indicator / TEACH (yellow) lights up.

In case of 2-level teaching

- This is the method of setting the threshold value by teaching two levels, corresponding to the object present and object absent conditions. Normally, setting is done by this method.

Step	Description	Display
(1)	Set the fiber within the sensing range. Press the MODE key to light up MODE indicator / TEACH (yellow).	10 $10^{-} 918$
(2)	For the FX-305(P), select 'ful ' ' or 'fuet ' beforehand. Press jog switch in the object present condition. If the teaching is accepted, the read incident light intensity blinks in the digital display.	8108
(3)	MODE indicator / TEACH (yellow) blinks. Press the jog switch in the object absent condition.	109818 $10^{\circ} 98$
(4)	If the teaching is accepted, the read incident light intensity blinks in the digital display and the threshold value is set at the mid-value between the incident light intensities in the object present and the object absent conditions. After this, the judgment on the stability of sensing is displayed. - In case stable sensing is possible:' 'Dood' 'is displayed. - In case stable sensing is not possible:‘ "Ming' blinks.	9110108 1080 19190 0
(5)	The threshold value is displayed.	101717 11010
(6)	' 'blinks in the digital display. (FX-301B/G/H only)	$\cdots \cdots$
(7)	The incident light intensity in the digital display and the setting is complete.	$\begin{aligned} & 1.8710 \\ & 11^{\circ} .80 \\ & \hline \end{aligned}$

Notes: 1) Do not move or bend the fiber cable after the sensitivity setting. Detection may become unstable. 2) In case of using the reflective type fibers, if Jog switch is pressed in the object absent condition at (2) and (3), the sensitivity is set to the maximum.

In case of full-auto teaching

- Full-auto teaching is used when it is desired to set the threshold value without stopping the assembly line, with the object in the moving condition.

Step	Description	Display
(1)	Set the fiber within the sensing range. Press MODE key to light up MODE indicator / TEACH (yellow).	10.718 $11^{\circ} 98$
(2)	For the FX-305(P), select 'fut ' ' or 'fut?' beforehand. Press the jog switch continuously for 0.5 sec . or more with the object moving on the assembly line. (The incident light intensity is displayed during sampling.)	$\begin{gathered} 18718 \\ 11^{\circ} 98 \\ \hline \end{gathered}$
(3)	'huto ' is displayed on the digital display. Release the jog switch when the object has passed.	$\begin{array}{ll} 89 \\ 61016 & 010 \end{array}$
(4)	If the teaching is accepted, the read incident light intensity blinks in the digital display and the threshold value is set at the mid-value between the incident light intensities in the object present and the object absent conditions. After this, the judgment on the stability of sensing is displayed. - In case stable sensing is possible: '9000' 'is displayed. - In case stable sensing is not possible: '倸, d' blinks.	 010 01010
(5)	The threshold value is displayed.	17817 .11810
(6)	' ' blinks in the digital display. (FX-301B/G/H only)	-...
(7)	The incident light intensity in the digital display and the setting is complete.	$\begin{aligned} & 1.710 \\ & 16^{\circ} .90 \\ & \hline \end{aligned}$

Notes: 1) The threshold value's shift amount can be selected in PRO mode. (Increments of 5% between -45 and 45% for setting possible. 0% default.)
2) Do not move or bend the fiber cable after the sensitivity setting. Detection may become unstable.

In case of limit teaching

- This is the method of setting the threshold value by teaching only the object absent condition (stable incident light condition). This is used for detection in the presence of a background body or for detection of minute objects.

Step	Description	Display
(1)	Set the fiber within the sensing range. Press the MODE key to light up MODE indicator / TEACH (yellow).	1 7 718 10 8 8
(2)	For the FX-305(P), select 'fur ' ' or ' 'but? ' beforehand. Press the jog switch in the object absent condition. If the teaching is accepted, the read incident light intensity blinks in the digital display.	18 718 10.818
(3)	MODE indicator / TEACH (yellow) blinks. Turn jog switch to the ' + 'side or ' - 'side.	10.918
(4)	If the jog switch is turned to the ' + ' side, ' , scrolls (twice)(Note 2) the display from right to left, and the threshold level is shifted to a value approx. 15% higher (lower sensitivity) than that set at (2). (Note 1) This is used in case of reflective type fibers. If the jog switch is turned to the ' - ' side, ' , 'scrolls (twice) (Note 2) the display from left to right, and the threshold level is shifted to a value approx. 15 \% lower (higher sensitivity) than that set at (2). (Note 1) This is used in case of thru-beam	\square

than that set at (2). (Note 1)
This is used in case of thru-beam type fibers.

After this, the judgment on whether the setting shift amount can be shifted or not is displayed. - In case shifting is possible:‘ Pood 'blinks. - In case shifting is not possible: '解d' 'blinks.	
The threshold value is displayed.	18171 1610
' ' blinks in the digital display. (FX-301B/G/H only)
The incident light intensity appears in the digital display and the setting is complete.	10.710 10.9

Notes: 1) The FX-301B/G/H has no scroll display.
2) The approx. 15% amount of shift is the initial value. The amount of shift can be changed in the PRO mode from approx. 5 to 80% (5% step).
3) Do not move or bend the fiber cable after the sensitivity setting. Detection may become unstable.

Please refer to the 'Sensor general catalog 2003-2004' or website (http://www.sunx.jp) for setting of threshold value when used in combination with contact type liquid level detection fiber FD-F8Y, and for setting of threshold value when used in combination with pipe-mountable liquid level detection fiber FD-F4 \square.

Threshold value fine adjustment

Step	Description	Display
(1)	Press the MODE key to light up MODE indicator / ADJ (yellow).	
(2)	For the FX-305(P), select 'fuv' ' ' or 'fut? ' beforehand. In case the threshold value is to be increased (sensitivity to be reduced), turn the jog switch to the ' + ' side to increase the threshold value slowly. If the jog switch is turned continuously to the ' + 'side, the threshold value increases rapidly. In case the threshold value is to be decreased (sensitivity to be increased), turn the jog switch to the ' - ' side to decrease the threshold value slowly. If the jog switch is turned continuously to the ' - ' side, the threshold value decreases rapidly.	
(3)	When the jog switch is pressed, the threshold value is confirmed.	

Output operation setting

Step	Description	Display
(1)	Press the MODE key to light up MODE indicator / L/D ON (yellow).	Displays present setting
(2)	For the FX-305(P), select 'Gus ! ' or 'Guse?' beforehand. If the jog switch is turn to the ' + ' or '-' direction, the output operation setting will change.	
(3)	When the jog switch is pressed, the threshold value is confirmed.	

Timer operation setting

- When the MODE indicator / TIMER (yellow) lights up, you can set the type of timer and whether the timer is to be used or not. For the FX-301B/G/H, the type of timer is set in PRO mode.
- Further, an OFF-delay which is useful when the response of the connected device is slow, etc., an ON-delay which is useful to detect only objects taking a long time to travel, and ONE-SHOT, which is useful when the input specifications of the connected device require a signal of a fixed width, are possible with the FX-301 $\square(-\mathrm{HS})$. [Furthermore, ONdelay • OFF-delay and ON-delay • ONE-SHOT timer are incorporated for FX-305(P).]

Cascading amplifiers

- The FX-301(P), FX-301B/G/H(P) and FX-305(P) cannot use communication for any settings other than the automatic interference prevention function. When using these amplifiers as well, use only the same type of amplifiers all together. However, the FX-301-HS(P) is not equipped with an optical communication function for setting the automatic interference prevention function, so be aware of this when using these amplifiers with other amplifiers.
- If the FX-301(P) updated version unit or the FX-305(P) is mounted with the $\mathbf{F X}-301(\mathbf{P})$ previous version unit or the $\mathbf{F X}-301 \mathrm{~B} / \mathbf{G} / \mathbf{H}(\mathbf{P})$ in cascade, place the FX-301(P) updated version units and the FX-305 units to the right side (seen from the connector side) of the previous version units. For a difference between the updated version unit and the previous version unit, refer to 'A difference between the updated version unit and the previous version unit' (P.34).

PRO mode

- PRO settings can be done when MODE indicator / PRO (yellow) lights up.

PRO mode table

	Display	Description
PRO1	0	(1) Response time change function ' 590 d (2) Timer setting function ' "t:3' (3) Hysteresis function ' ${ }^{3} y_{5}$, (4) Stability function ' 56 , (5) Shift function ' 5 ITt? (6) Emitting power selection function ' 16 ct ' (Note 1)
PRO2	$0^{80} 10800^{\circ}$	(1) Digital display setting function 's : 159 ' (2) Digital display inversion function ' 'urn' (3) ECO mode setting function ' 60 '
PRO3	0	(1) Data bank load setting function ' chit. (2) Data bank save setting function ' 659 '
PRO4	$\begin{array}{\|ccc} 1010 & 10 \\ 0.10 \end{array}$	(1) Setting condition copy function ' Cois', (2) Remote data bank load setting function ' chid' (3) Remote data bank save setting function 'ch5s ' (4) Communication condition confirmation function 't5 5 ' (Note 2) (5) Communication lock function ' (16 ' (6) Back-up function ' $6 \cdot \mathrm{w}^{9}$ ' (Note 3)
PRO5		(1) Code setting function ' Lode' (2) Adjust lock setting function ' M.L:' (3) Setting reset function ':50, (4) Interference prevention function ' inis' ' (Note 4)
$\begin{gathered} \text { PRO6 } \\ \text { (Note 4) } \end{gathered}$	$00^{10} 0$	(1) Output setting function ' Dive ' ', ' hute'

Notes: 1) FX-301(P) updated version unit, FX-301(P)-HS, FX-305(P) only
2) $\mathbf{F X}-301 \mathrm{~B}(\mathbf{P}) / \mathbf{G}(\mathbf{P}) / \mathbf{H}(\mathbf{P})$ only
3) FX-301(P) updated version unit, FX-305(P) only
4) FX-305(P) only

Key-lock function

- If the jog switch and the MODE key are pressed for more than 3 sec . at the same time in RUN mode condition, the key operations are locked, and only the threshold value confirmation function or the adjust function (valid only when the adjust lock function is canceled) is valid.

Wiring

- When the emission halt of the emitting power switching function is set from 'OFF' to 'ON', the output may be unstable. Do not use the output control for 0.5 sec . after starting emission.
- Make sure that the power supply is off while wiring.
- Verify that the supply voltage variation is within the rating.
- Take care that if a voltage exceeding the rated range is applied, or if an AC power supply is directly connected, the sensor may get burnt or damaged.
- If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the power supply is connected to an actual ground.
- In case noise generating equipment (switching regulator, inverter motor, etc.) is used in the vicinity of this product, connect the frame ground (F.G.) terminal of the equipment to an actual ground.
- Take care that short-circuit or wrong wiring of the load may burn or damage the sensor.
- Do not run the wires together with high-voltage lines or power lines or put them in the same raceway. This can cause malfunction due to induction.
- Ensure that an isolation transformer is utilized for the DC power supply. If an auto transformer is utilized, the main amplifier or power supply may be damaged.
- Make sure to use the optional quick-connection cable for the connection of the amplifier [FX-301(P)(-HS) / FX-305(P)]. Extension up to total $100 \mathrm{~m} 328.084 \mathrm{ft}(50 \mathrm{~m}$ 164.042 ft for 5 to 8 units, 20 m 65.617 ft for 9 to 16 units,) is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable. However, in order to reduce noise, make the wiring as short as possible.

Others

- Do not use during the initial transient time (0.5 sec . approx.) after the power supply is switched on.
- Take care that the sensor is not directly exposed to fluorescent light from a rapid-starter lamp or a high frequency lighting device, as it may affect the sensing performance.
- This sensor is suitable for indoor use only.
- Avoid dust, dirt, and steam.

Take care that the product does not come in direct contact with water, oil, grease, or organic solvents, such as, thinner, etc.

- This sensor cannot be used in an environment containing inflammable or explosive gasses.
- Never disassemble or modify the sensor.

Function table for FX-300 series

	Previous models			New models		
	$\begin{array}{\|c\|} \hline \text { FX-301(P) } \\ \text { (Previous version unit) } \\ \hline \end{array}$	FX-302(P)	FX-303(P)	FX-301(P) (Updated version unit)	FX-301(P)-HS	FX-305(P)
Four-chemical emitting element + APC circuit	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
Four-chemical emitting element only	(Note 1)	\bigcirc	\bigcirc	-	-	-
Light emitting amount selection function	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
Reduced intensity mode (S-D)	(Note 1)	\bigcirc	\times	\bigcirc	\bigcirc	-
9,999 digit display	\times	\times	\times	\times	\times	\bigcirc
Response time (Max. speed)	$150 \mu \mathrm{~s}$	$300 \mu \mathrm{~s}$	$90 \mu \mathrm{~s}$	$65 \mu \mathrm{~s}$	$35 \mu \mathrm{~s}$	$65 \mu \mathrm{~s}$
Interference prevention function (Effective no. of units)	Incorporated (4)	Incorporated (8)	Not incorporated (0)	Incorporated (4)	Not incorporated (0)	Incorporated (16)
Independent 2 outputs	\times	\times	\times	\times	\times	\bigcirc
Alarm output function	\times	\times	\times	\times	\times	\bigcirc
Error output function	\times	\times	\times	\times	\times	\bigcirc
Differential sensing	\times	\times	\times	\times	\times	\bigcirc
Window comparator mode	\times	\bigcirc	\times	\times	\times	\bigcirc
Peripheral units that can be combined						
FX-CH(-P)	\bigcirc	\bigcirc	\times	\times	\times	\times
FX-CH2(-P)	\times	\times	\times	\bigcirc	\times	\bigcirc
SC-GU1-485	\times	\times	\times	\bigcirc	\times	\bigcirc

Note: Except FX-301B/G/H.
A difference between the updated version unit and the previous version unit for FX-301 (Red LED type)

Changes in appearance

Checking minor changes between previous and new models can be done by checking whether the printing is on both sides or only one side.

Upgraded functions

1. Response times added

An ultra high-speed mode (H-SP) has been added to the existing 4 response time modes [high-speed (FAST), reduced intensity (S-D), standard (STD) and long range (LONG)]. This is changed using 'Trol' in '500'.

Before change	After change

2. Extension of timer period

The setting range for the timer period was previously 500 ms , but this has been extended to a new range of 9999 ms .
3. Light emitting amount selection function

The light emitting amount can be changed to one of 4 levels (5 levels when emission halt is included).
4. Backup, copy lock and key lock functions added

Backup: This selects whether or not threshold values set by teaching are written to (stored in) an EEPROM.
Copy lock: This selects whether copy function and data bank function communication are possible or not.
Key lock: This disables input using switches to prevent accidental changing of settings.

Changes in operation

1. Timer selection method

Previous version unit: Timer type was changed using PRO1 mode. The 'TIMER setting in NAVI mode could only be turned on or off.
After change: The type of timer can be changed using the 'TIMER' function in NAVI mode.
2. Checking threshold value in RUN mode

The threshold values can be checked by turning the jog switch.

Display changes

1. Checking blinking of sensitivity surplus

The stable surplus display method after teaching has been changed.
Previous version unit: Sensitivity surplus is indicated by the number of blinks of the stability indicator.

2. Initial direct code value changed

The factory default settings for the direct codes have been changed.
Previous version unit $0000 \longrightarrow$ After change 0004
※ The default setting for the timer period is 10 ms , and the direct code for 10 ms is ' 4 ', so this has been changed.

Internal circuit changes

1. Addition of an APC circuit

A four-chemical emitting element which provides stable sensing over long periods has been added, as well as an APC (Ȧuto Pंower Ciontrol) circuit that improves stability during short periods.

Points to note when combining sensor types

When using the newer sensors together with previous version units (including the FX-301B/G/H), note the following.

- Communication is possible when the previous version units and the updated version units are used in an arrangement such as that shown in Figure A below.
- If the previous version units and the updated version units are used in an arrangement such as that shown in Figure B below, the interference prevention function and the PRO4 function cannot be used.
- In order to use the interference prevention function and the PRO4 function when using previous version units and the updated version units together, it is recommended that you use an arrangement such as that shown in Figure C below.

Notes: 1) FX-305 \square; Output 1 operation indicator (Orange)
2) FX-305 \square; Output 2 operation indicator (Orange)
3) FX-301 \square; 3-pin, FX-305 \square; 4-pin

Introducing digital laser sensor LS series

Making high precision laser sensing more intuitive and easier to use

- Minute objects can be sensed even at removed distances.
- 3 types of laser sensor head available.
- Side-by-side placement together with fiber sensors is also possible.

<IC pin check>

<Sensing remaining sheet roll amounts>

For further details, please refer to the SUNX home page (http://www.sunx.co. $\mathrm{jp} /$) or contact our office.

External Input Unit for Digital Sensor / FX-CH2

く ϵ°

Support for stable sensing and smooth setup changes!

Teaching and data bank switching for up to a maximum of 16 digital fiber sensors (FX-301 and FX-305) can be carried out all at once using an external device such as a PLC, touch screen or switch.

Applications involving smooth setup operations

Setup changes (external automatic teaching / data bank switching) Digital fiber settings can be changed using input from a touch screen or switch, so that production line setup changes can be carried out more easily.

- External teaching

Full-auto teaching is recommended for teaching when the sensing object is changed without stopping the line.

- Data bank switching

Settings such as output operations (L-ON / D-ON) and timer operations can be recorded in the digital fiber sensor's data bank and switching can be carried out externally.

※ Up to 3 files can be stored.

FX-CH2 function list

Teaching input

The following types of external teaching can be carried out.

- Full-auto teaching - Limit teaching ' - '
\bullet Limit teaching ' + ' \bullet 2-level teaching

Key lock setting input
The key lock function that prevents incorrect operations by operators can be set on and off.

Data bank switching input

Switching between 3 channels of data banks and loading and saving of all channels at once can be carried out.

Product lineup

Connector for input device
CN-EP1 [1 pc. included with FX-CH2(-P)]

- Input signal

The types of input operations are determined by S1 and S2, and the input timing is determined by S3.

※ FX-CH2(-P) does not include a cable for connecting to the input device.

- Mode selection

The MODE wire can be switched between high and low to select the input mode from either 'external teaching and key lock' or 'data bank switching'.

Explanation of limit teaching

- Limit teaching ' - ,

Limit teaching ' - ' shifts the threshold value setting to make it less than the incident light intensity during teaching.

When limit teaching is not used
If the incident light intensity changes with respect to the initial threshold setting value because of reasons such as beam axis slippage, sensing can become unstable and incorrect operations can occur.

[^1] object is not present

When limit teaching ' - ' is used
The threshold value is reset each time before the sensing object arrives, (limit teaching ' - '). As a result, sensing is not affected by changes in incident light intensity.

Incident light intensity when sensing object is present

- Limit teaching ' +

Limit teaching ' + ' is the opposite of limit teaching ' - ', so that the threshold value setting is shifted toward a higher setting to make it more than the incident light intensity during teaching.

When limit teaching is not used
If dust or other particles cause changes in the incident light intensity with respect to the initial threshold setting value, sensing can become unstable and incorrect operations can occur.

When limit teaching ' + ' is used The threshold value is reset each time before the sensing object arrives, (limit teaching ' + '). As a result, sensing is not affected by changes in incident light intensity.

[^2]
ORDER GUIDE

Designation		Model No.
External input unit	NPN input type	FX-CH2
	PNP input type	FX-CH2-P
Connector for input device (1 pc. included as standard with external input unit)	CN-EP1	
Quick-connection cable (Main cable)	Length: 1 m 3.281 ft	CN-73-C1
	Length: 2 m 6.562 ft	CN-73-C2
	Length: 5 m 16.404 ft	CN-73-C5
End plate	MS-DIN-E	

SPECIFICATIONS

Type	NPN input type	PNP input type
Item Model No.	FX-CH2	FX-CH2-P
Applicable sensor	FX-301(P)(Note 1), FX-305(P)	
Supply voltage	12 to 24 V DC $\pm 10 \%$ Ripple P-P 10 \% or less	
Power consumption	600 mW or less (when all indicators light up)	
Input	Low: 0 to +2 V DC Source current 0.5 mA Input impedance $10 \mathrm{k} \Omega$ approx. High: +5 V to +V DC, or open	Low: +4 V to +V DC Sink current 0.5 to 3 mA Input impedance $10 \mathrm{k} \Omega$ approx. High: 0 to +0.6 V DC, or open
Power indicator	Green LED (Lights up when the power is ON)	
Transmission operation indicator	Green LED (Lights up when loaded, and 2-level / Limit teaching, blinks \rightarrow lights up when saved, and Full-auto teaching)	
Ambient temperature	-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ (if 4 to 7 sensors are connected in cascade: -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$, if 8 to 16 sensors are connected in cascade: -10 to $+45^{\circ} \mathrm{C}$ +14 to $+113^{\circ} \mathrm{F}$)(No dew condensation or icing allowed), Storage: -20 to $+70^{\circ} \mathrm{C}-4$ to $+158^{\circ} \mathrm{F}$	
Material	Enclosure: Heat-resistant ABS	
Cable extension	Extension up to total 10 m 32.808 ft is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable.	
Weight	Net weight: 20 g approx., Gross weight: 40 g approx.	
Accessory	CN-EP1 (Connector for input device)(Note 2): 1 pc.	

Notes: 1) Only updated version of FX-301(P) can be used. Do not use the previous version of FX-301(P).
The updated version of FX-301(P) have 'NAVI' printed on one side. (See the right figure.)

2) The applicable wire is $0.08 \mathrm{~mm}^{2}$ (AWG 28) to $0.5 \mathrm{~mm}^{2}$ (AWG 20) and the wire sheath diameter should be $\phi 1.5 \mathrm{~mm} \phi 0.059$ in or less.

I/O CIRCUIT DIAGRAMS

FX-CH2

Color code of
quick-connection cable
Connector pin No. for

Internal circuit \longleftrightarrow Users' circuit Symbols... D_{1} to D_{4} : Reverse supply polarity protection diode
$\mathrm{T}_{\mathrm{r} 1}$ to $\mathrm{T}_{\mathrm{r} 4}$: PNP input transistor

FX-CH2-P

When MODE is set to High (Low for FX-CH2-P) or open

	Data bank load				Data bank save			
	1ch	2ch	3ch		1ch	2ch	3ch	
S1	$\stackrel{\leftrightarrow}{t 1}$		$\stackrel{+11}{ }$	$\begin{aligned} & - \text { High } \\ & \text { Low } \end{aligned}$	$\stackrel{\leftrightarrow}{t 1}$		$\stackrel{+1}{ }$	-High
S2		$\stackrel{+1}{+}$	$\xrightarrow{+1}$	$\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$		$\xrightarrow{\rightarrow 1}$	$\stackrel{+}{+1}$	-High
S3	$\rightarrow+2$	$\rightarrow+\mathrm{t} 2$	$\rightarrow+2]$	-High Low	$\xrightarrow{+3}$	$\xrightarrow{+3}$	$\xrightarrow{+3}$	$\begin{array}{\|l\|} \hline \text { High } \\ \text { Low } \end{array}$

$\mathrm{t} 1: \mathrm{t} 1>\mathrm{t} 2, \mathrm{t} 1>\mathrm{t} 3 \mathrm{t} 2: 20 \mathrm{~ms}$ to less than 2 sec . $\mathrm{t} 3: 2 \mathrm{sec}$. or more
When MODE is set to Low (High for FX-CH2-P)

$t 1: t 1>t 2, t 1>t 3$

$\mathrm{t} 1: 20 \mathrm{~ms}$ to less than 2 sec .
$\mathrm{t} 2: 20 \mathrm{~ms}$ to less than 2 sec. (This is the timing period for 1 level. 2 levels are required.) $\mathrm{t} 2: 2 \mathrm{sec}$. or more t3 : 0.5 sec . or more (Sampling starts after 0.5 sec .)
Notes: 1) The above diagrams show the FX-CH2 (NPN input type). For the FX-CH2-P (PNP input type), High and Low are reversed. 2) After each operation has been confirmed, the fiber sensor cannot be reset for a period of approximately 50 ms .

DIMENSIONS (Unit: mm in)

Upper Communication Unit for Digital Sensors / SC-GU1-485

We now offer remote maintenance for sensors! Also reduces the work required to the system to start running!

Centralized control and setting of scattered digital sensors (FX-301/305) is possible using a PLC or personal computer

Control and settings can be carried out remotely Setting and checking incident light intensity for digital sensors (FX-301/305) that are scattered inside and outside equipment can be carried out remotely for all sensors by using the SC-GU1-485, which greatly improves ease of operations such as monitoring equipment that is running and also equipment starting and maintenance.

Note: Used when the output signal is sent via a SC-GU1-485 to the PLC. If the output signal is sent directly to the PLC, a quick-connection cable (CN-72-C $\square, \mathrm{CN}-71-\mathrm{C} \square$) should be used.

Less wiring and installation work

Up to a maximum of 16 sensors can be connected side by side. Power can be supplied to all of them at once, so that less wiring and installation work is required. Wire-saving connectors also makes it possible to send output signals to the PLC in a single batch.

Communication speed 57.6 kbps

High-speed communication at a maximum speed of 57.6 kbps allows the operator to instantly check information such as the incident light intensity and output statuses of the digital sensors.
High general applicability so that any type of PLC can be used RS-485 communication provides a high level of general compatibility so that any type of PLC can be used. Integration with existing systems is possible without the need to change PLCs.

Series connection of a maximum of 31 nodes is possible A maximum of 31 nodes can be connected in series. This is ideal for flexible handling when the sensors are to be installed in scattered locations or if more sensors are added.

SPECIFICATIONS

pe	Main unit
Item Model No.	SC-GU1-485
Applicable sensor	FX-301(P)(Note), FX-305(P)
Connectable units	Max. 16 units of sensor per SC-GU1-485
Connectable nodes	Max. 31 nodes
Supply voltage	24 V DC $\pm 10 \%$ Ripple P-P10 \% or less
Current consumption	45 mA or less (10 mA or less for SC-GU1-EU)
Communication method	2 wire half duplex method
Communication speed	57,600 bps / 38,400 bps / 19,200 bps / 9,600 bps Selectable by DIP switch
Synchronization method	Asynchronous communication method
Electrical characteristic	Conforming to EIA RS-485
Total extension length	```Communication cable: 100 m 328.084 ft or less [SC-GU1-485 (termination) to PLC], Power supply cable: Less than 10 m 32.808 ft```
Ambient temperature	-10 to $+55^{\circ} \mathrm{C}+14$ to $+131{ }^{\circ} \mathrm{F}$ (lf 4 to 7 sensors are connected in cascade: -10 to $+50^{\circ} \mathrm{C}+14$ to $+122{ }^{\circ} \mathrm{F}$, if 8 to 16 sensors are connected in cascade: -10 to $+45^{\circ} \mathrm{C}+14$ to $+113{ }^{\circ}$) (No dew condensation or icing allowed), Storage: -20 to $+70^{\circ} \mathrm{C}-4$ to $+158^{\circ} \mathrm{F}$
Material	Enclosure: Heat-resistant ABS
Weight	35 g approx. (10 g approx. for SC-GU1-EU)
Accessories	SC-GU1-EU (End unit): 1 pc . CN-73-C2 [Quick-connection cable (cable length 2 m 6.562 ft)]: 1 pc . SC-GU1-CC02 [Link cable (cable length 0.2 m 0.656 ft): 1 pc .
Note: Applicable units are for the FX-301(\mathbf{P}) after version update. Do not use the previous version of $\mathrm{FX}-\mathbf{3 0 1}(\mathrm{P})$. The updated version of FX-301(P) has the 'NAVI' printed only on single side. (See the right figure.)	

DIMENSIONS (Unit: mm in)

The SUNX website download data service lets you download operation verification programs to a personal computer.
(http://www.sunx.co.jp/)
Monitoring example

Operating environment
OS: Windows 98 Second Edition (standard English language installation only) or later CPU: Pentium II 400 MHz processor or higher (Pentium II 450 MHz or higher recommended) Memory: 64 MB or more
(128 MB or more recommended) Free hard disk space: 10 MB or more Serial port: RS-232C compatible

Details that can be checked:

Sensor threshold values, output statuses, configuration settings, teaching and timer period setting changes, etc.
Notes: 1) Note the following when using this software.
The software is supplied as freeware. Copyright is retained by SUNX Limited. You must agree to the following conditions before using the software.

Conditions of use

- SUNX does not guarantee the correct operation of this software. SUNX takes no responsibility for any direct or indirect losses, damage, loss of profit or any other problems arising as a result of using or operating this software.

2) When connecting the SC-GU1-485 to a personal computer, you will need obtain a interface converter (RS-232C \Leftrightarrow RS-485 converter) and cable to connect between the computer and the interface converter

OPTION

CN-701 (Wire-saving connector)
Note: Used when the output signal is sent via a SC-GU1-485 to the PLC.

SC-GU1-EU End unit (Accessory)

CN-701 Wire-saving connector (Optional)

All information is subject to change without prior notice.

Sensing the Future

SUNX Limited

2431-1 Ushiyama-cho, Kasugai-shi, Aichi,
486-0901, Japan
Phone: +81-(0)568-33-7211
FAX: +81-(0)568-33-2631

Overseas Sales Dept.

Phone: +81-(0)568-33-786
FAX: +81-(0)568-33-8591

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for panasonic manufacturer:
Other Similar products are found below :
ECE-A1HKAR47 ELC-09D151F HC2-H-DC48V-F HL2-HP-AC120V-F HL2-H-DC12V-F HL2-HP-DC12V-F HL2-HP-DC6V-F HL2-HP-DC24V-F HL2-H-DC110V-F HC4-H-DC24V HL2-HTM-DC24V-F HL2-HTM-AC24V-F HC4-H-AC24V HC4-H-AC120V HC4-H-DC12V AZH2031 RP-SDMF64DA1 EVM-F6SA00B55 RP-SMLE08DA1 ERZ-V20R391 ELL-ATV681M ERZ-V05V680CB LT4H-DC24V LT4HL8-AC24V LT4HW-AC24V LT4HWT8-AC240V LT4HWT-AC240VS CY-122A-P ETQ-P5M470YFM EVAL_PAN1555 EVQPAE04M EX-14B EX-22B-PN EX-31A-C5 EXB-24N121JX MC-NA40-4 EX-F72-PN EX-L211 EYG-A121803V MFMCA0030AEB FCR-M50-AC208V FC-SFBH-20 FC-SFBH-24 FD-F8Y MHMA102A1C MHMD022S1S MHMD041S1S MHMD042G1T MHMD082G1T FD-S9

[^0]: Note: The sensing ranges are the values when used in combination with red LED type amplifier. Please contact our office for details on sensing ranges for other types of amplifier

[^1]: Incident light intensity when sensing

[^2]: ※ When limit teaching is used, use the SHIFT function in PRO mode of
 When limit teaching is used, use the SHIFT function in PRO mode of
 the amplifier to set the shift amount beforehand.

