Panasonic ideas for life

RoHS compliant

Relay for control panel of $10 \mathrm{~A}(2 \mathrm{c} / 3 \mathrm{c} / 4 \mathrm{c}$)

HP RELAYS

FEATURES

1. High-capacity and long life

 Mechanical life is more than 10 million operations and, with electrical life of more than 200,000 operations (resistive load 10 A ; inductive load 7.5 A), the relay has excellent inductive load durability.2. Easy mounting and wiring

The terminal arrangement is apparent at a glance and wiring is easy. Moreover, quick tab terminal is also possible.
3. Operation indicator option Optional operation indicators are available for easy visual confirmation that relays are operating. They simplify maintenance.
4. Wide range of sockets and terminal sockets
To enable use with DIN rails, DIN terminal sockets are also available.

TYPICAL APPLICATIONS

HP relays enjoy wide use in various applications, particularly in automation controls and remote controls.
Applications include:

1. Industrial machinery

For controlling positioning, pressure, and temperature in molding equipment, boilers, pumps, charging pressure equipment, measuring and evaluation equipment, textile machines, etc.

2. Machine tools

Control of positioning and directional change in turning machines, lathes, borers, etc.

3. Food processing packing machines

Automatic control of packing equipment for milk and seafood, bottling, canning, and packaging

4. Office equipment

Control of copiers, time recorders, etc.
5. Coin operate machines

Control of food, cigarette, and other vending machines
6. Measuring devices and equipment For repeating installation of control signals and in power amplifiers
7. Generators, transformers and power receiving equipment.
Functional parts in protective equipment, functional assistance in automatic adjustment equipment, telemeters and other remote monitoring equipment 8. Control of conveyance equipment Control panels for elevators, escalators, and other conveyance equipment, control of all kinds industrial transport equipment such as conveyors.

9. Amusement equipment

Control of equipment in amusement parks, etc., control of bowling alley equipment, control of fountains in public parks

ORDERING INFORMATION

Contact arrangement
2: 2 Form C 3: 3 Form C 4: 4 Form C
Terminal arrangement
Nil: Plug-in terminal
TM: TM type (2 Form C only)
M: Direct mounting (3 Form C only)
Operation indication
Nil: Without indication
L: With indication
Nominal coil voltage
AC 24, 48, 100, 115, 200, 220, 240 V
DC 12, 24, 48, 100, 110 V
Contact material
F:
4 Form C, Silver alloy (cadmium-free)
Nil: 2 Form C, 3 Form C (Silver)

TYPES

1. Plug-in type

Nominal coil voltage	2 Form C	3 Form C	4 Form C
	Part No.	Part No.	Part No.
24 V AC	HP2-AC24V	HP3-AC24V	HP4-AC24V-F
48 V AC	HP2-AC48V	HP3-AC48V	HP4-AC48V-F
100 V AC	HP2-AC100V	HP3-AC100V	HP4-AC100V-F
115 V AC	HP2-AC115V	HP3-AC115V	HP4-AC115V-F
200 V AC	HP2-AC200V	HP3-AC200V	HP4-AC200V-F
220 V AC	HP2-AC220V	HP3-AC220V	HP4-AC220V-F
240 V AC	HP2-AC240V	HP3-AC240V	HP4-AC240V-F
12 V DC	HP2-DC12V	HP3-DC12V	HP4-DC12V-F
24V DC	HP2-DC24V	HP3-DC24V	HP4-DC24V-F
48 V DC	HP2-DC48V	HP3-DC48V	HP4-DC48V-F
100V DC	HP2-DC100V	HP3-DC100V	HP4-DC100V-F
110V DC	HP2-DC110V	HP3-DC110V	HP4-DC110V-F

Standard packing (2 Form C): Carton: 20 pcs.; Case: 100 pcs.
Standard packing (3 Form C, 4 Form C): Carton: 10 pcs.; Case: 50 pcs.
2. Plug-in type (with operation indication)

	Nominal coil voltage	2 Form C	3 Form C	4 Form C
		Part No.	Part No.	Part No.
With LED indication	24 V AC	HP2-L-AC24V	HP3-L-AC24V	HP4-L-AC24V-F
With neon lamp	100 V AC	HP2-L-AC100V	HP3-L-AC100V	HP4-L-AC100V-F
	115 V AC	HP2-L-AC115V	HP3-L-AC115V	HP4-L-AC115V-F
	200 V AC	HP2-L-AC200V	HP3-L-AC200V	HP4-L-AC200V-F
	220 V AC	HP2-L-AC220V	HP3-L-AC220V	HP4-L-AC220V-F
	240 V AC	HP2-L-AC240V	HP3-L-AC240V	HP4-L-AC240V-F
With LED indication	12 V DC	HP2-L-DC12V	HP3-L-DC12V	HP4-L-DC12V-F
	24V DC	HP2-L-DC24V	HP3-L-DC24V	HP4-L-DC24V-F
	48 V DC	HP2-L-DC48V	HP3-L-DC48V	HP4-L-DC48V-F
With neon lamp	100 V DC	HP2-L-DC100V	HP3-L-DC100V	HP4-L-DC100V-F
	110 V DC	HP2-L-DC110V	HP3-L-DC110V	HP4-L-DC110V-F

Standard packing (2 Form C): Carton: 20 pcs.; Case: 100 pcs.
Standard packing (3 Form C, 4 Form C): Carton: 10 pcs.; Case: 50 pcs.

3. TM type and Direct mount type

Nominal coil voltage	2 Form C (TM type)	3 Form C (direct mount type)
	Part No.	Part No.
24 V AC	HP2-TM-AC24V	HP3-M-AC24V
48 V AC	HP2-TM-AC48V	HP3-M-AC48V
100 V AC	HP2-TM-AC100V	HP3-M-AC100V
115 V AC	HP2-TM-AC115V	HP3-M-AC115V
200 V AC	HP2-TM-AC200V	HP3-M-AC200V
220 V AC	HP2-TM-AC220V	HP3-M-AC220V
240 V AC	HP2-TM-AC240V	HP3-M-AC240V
12 V DC	HP2-TM-DC12V	HP3-M-DC12V
24 V DC	HP2-TM-DC24V	HP3-M-DC24V
48 V DC	HP2-TM-DC48V	HP3-M-DC48V
100 V DC	HP2-TM-DC100V	HP3-M-DC100V
110 V DC	HP2-TM-DC110V	HP3-M-DC110V

Standard packing: Carton: 10 pcs.; Case: 50 pcs.

4. Direct mount type (with LED indication)

	Nominal coil voltage	3 Form C
		Part No.
With neon lamp	100 V AC	HP3-ML-AC100V
	115 V AC	HP3-ML-AC115V
	200 V AC	HP3-ML-AC200V
	220 V AC	HP3-ML-AC220V
	240 V AC	HP3-ML-AC240V
	100 V DC	HP3-ML-DC100V
	110V DC	HP3-ML-DC110V

Standard packing: Carton: 10 pcs.; Case: 50 pcs.
Notes: 1. Standard packaging is handled in units of inner cartons. Please specify if you require inner cartons to be boxed.
2. Sockets, terminal sockets and installation brackets are not included. Please order these separately.
3. For products compliant with international standards, please refer to the standards chart.

* For sockets and terminal sockets, see page 117.

ASCTB81E 201201-T

RATING

1. Coil data
1) AC coils

Contact arrangement	Nominal coil voltage	Nominal operating current (mA)		Nominal operating power (VA)		Inductance (H)		Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
		50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz			
2 Form C	24 V AC	94 mA	78 mA	2.25VA	1.9VA	0.753	0.776	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	48 V AC	46.5 mA	39 mA	2.23 VA	1.9 VA	3.055	3.106			
	100 V AC	25.3 mA	21 mA	2.36VA	2.1VA	12.60	12.03			
	115 V AC	23.1 mA	18 mA	2.31VA	2.1 VA	16.70	15.83			
	200 V AC	12.4 mA	11 mA	2.48 VA	2.2VA	48.03	45.81			
	220 V AC	10.6 mA	9.5 mA	2.34 VA	2.1VA	61.28	57.90			
	240 V AC	10.0 mA	9.0 mA	2.40VA	2.2VA	69.00	66.26			
3 Form C	24 V AC	148.7 mA	130 mA	3.56VA	3.1VA	0.0494	0.475	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	48 V AC	74.2 mA	65 mA	3.56VA	3.1VA	1.976	1.899			
	100 V AC	36.4 mA	32 mA	3.64VA	3.2VA	8.500	8.038			
	115 V AC	32.5 mA	28.5 mA	3.74VA	3.3VA	10.79	10.36			
	200 V AC	18.2 mA	16 mA	3.65VA	3.2 VA	33.53	32.10			
	220 V AC	16.0 mA	14.2 mA	3.54VA	3.1VA	41.35	39.32			
	240 V AC	15.8 mA	13.9 mA	3.79VA	3.3VA	45.94	44.05			
4 Form C	24 V AC	229 mA	200 mA	5.49VA	4.8 VA	0.320	0.309	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	48 V AC	108 mA	95 mA	5.18VA	4.6 VA	1.348	1.292			
	100 V AC	57.3 mA	50 mA	5.73VA	5.0VA	5.348	5.156			
	115 V AC	47.6 mA	42 mA	5.47VA	4.8 VA	7.264	6.953			
	200 V AC	28.5 mA	25 mA	5.69VA	5.0 VA	21.27	20.45			
	220 V AC	23.8 mA	21 mA	5.24 VA	4.6 VA	27.75	26.57			
	240 V AC	23.3 mA	20.5 mA	5.58 VA	4.9VA	30.98	29.75			

2) DC coils $\left(20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$

Contact arrangement	Nominal coil voltage	Nominal current (mA)	Nominal operating power (W)	Coil resistance (Ω)	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Max. applied } \\ \text { voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$
2 Form C	12V DC	109 mA	1.3W	110Ω	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	24V DC	54.5 mA	1.3W	440Ω			
	48 V DC	26.7 mA	1.3W	1,800 ${ }^{\text {a }}$			
	100 V DC	14.9 mA	1.5W	6,700 ${ }^{\text {, }}$			
	110V DC	15.0 mA	1.7W	7,300 ${ }^{\text {a }}$			
3 Form C	12 V DC	120 mA	1.4W	100Ω	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	15% V or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	24V DC	60 mA	1.4W	400Ω			
	48 V DC	31 mA	1.5W	1,560 ${ }^{6}$			
	100V DC	15.6 mA	1.6W	6,400 ${ }^{\text {d }}$			
	110V DC	14.9 mA	1.6W	7,450 ${ }^{\text {, }}$			
4 Form C	12 V DC	127 mA	1.5W	95Ω	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	24V DC	63 mA	1.5W	380Ω			
	48 V DC	32.0 mA	1.5W	1,500 ${ }^{\text {a }}$			
	100V DC	16.3 mA	1.6W	5,950			
	110V DC	15.7 mA	1.7W	7,000 2			

Notes: 1. The nominal current area is $\pm 15 \%(60 \mathrm{~Hz})$ [AC coils],. $\pm 10 \%\left(20^{\circ} \mathrm{C}\right)$ [DC coils]
2. The coil resistance for DC operation is the value measured when the coil temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Compensate $\pm 0.4 \%$ for every $\pm 1^{\circ} \mathrm{C}$ change in temperature.
3. The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the nominal coil voltage, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the nominal coil voltage. In particular, for AC operation, if the impressed voltage drops to $80 \% \mathrm{~V}$ or more below the nominal coil voltage, humming will occur and a large current will flow leading possibly to coil burnout.
4. For use with 200 V DC, connect a $6.7 \mathrm{k} \Omega(10 \mathrm{~W})$ resistor, in series, to the 100 V DC relay [3 Form C type is $.6 .4 \mathrm{k} \Omega$ (5 W); 4 Form C type is $.6 .2 \mathrm{k} \Omega$ (10 W)].
5. As a general rule, only a pure DC voltage should be used for the coil drive. However, a DC power supply that contains ripples has characteristics that differ from pure DC. Therefore, please verify characteristics (operate voltage, release voltage, humming) using the actual circuit that will be used.

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C, 3 Form C, 4 Form C
	Contact resistance (Initial)		Max. $15 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material	2 Form C, 3 Form C	Ag
		4 Form C	Ag alloy (cd free)
Rating	Nominal switching capacity		10A 250V AC (resistive load)
	Min. switching capacity (Reference value)*1		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min (2 Form C, 4 Form C). 2,000 Vrms for 1 min (3 Form C) (Detection current: 10 mA .)
		Between contact sets	1,500 Vrms for 1 min (2 Form C, 4 Form C). 2,000 Vrms for 1 min (3 Form C) (Detection current: 10mA.)
		Between contact and coil	1,500 Vrms for 1 min (2 Form C, 4 Form C). 2,000 Vrms for 1 min (3 Form C) (Detection current: 10 mA .)
	Temperature rise (coil)		Max. $65^{\circ} \mathrm{C} 149^{\circ} \mathrm{F}$ (By temperature method, at $40^{\circ} \mathrm{C}$, nominal current)
	Operate time*2		Max. 25ms (2 Form C), Max.30ms (3 Form C, 4 Form C) (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time*2		Max. 25ms (2 Form C), Max.30ms (3 Form C, 4 Form C) (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2 mm
Expected life	Mechanical		Min. 10^{7}
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+104^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. Operating speed		20 times/min. (at max. rating)
Unit weight			2 Form C: approx. 60g 2.12oz, 3 Form C: approx. 100 g 3.53 oz, 4 Form C: approx. 125 g 4.41 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
*2. For the AC coil types, the operate/release time will differ depending on the phase.
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

3. Electrical life

1) AC load

Voltage	125V AC		250V AC		Expected life
Load	Resistive load (A) ($\cos \varphi=1$)	Inductive load (A) ($\cos \varphi=0.4)$	Resistive load (A) ($\cos \varphi=1$)	Inductive load (A) ($\cos \varphi=0.4$)	
Current	-	-	10	7.5	Min. 2×10^{5}
	10	7.5	7.5	5	Min. 5×10^{5}
	5	3	3	2	Min. 10^{6}
	1	0.7	0.6	0.4	Min. 2×10^{6}

Note: When the electromagnet or exciting coil (Solenoid, etc.) is the load, the value of motor or lamp load is applicable.

2) DC load

Voltage	24V DC		125V DC		Expected life
Load	Resistive load (A)	Inductive load (A)	Resistive load (A)	Inductive load (A)	
Current	-	7	-	-	Min. 2×10^{5}
	7.5	5	0.5	0.4	Min. 5×10^{5}
	5	3	0.3	0.2	Min. 10^{6}
	1	0.6	0.1	0.06	Min. 2×10^{6}

Notes: 1. For DC inductive loads, use an arc suppressing circuit.

2. Cautions at DC load use

When used under a DC load operating at high repetition rate with considerable arcing, corrosion of the contacts and/or the contact blades is likely to occur.
4. Life of LED and neon lamp (with operation indication)

	Continuous	Use rating (ON time) 50%
With neon lamp	25,000 hours (approx. 3 years)	Approx. 6 years
With LED indication	50,000 hours (approx. 5.5 years)	100,000 hours (approx. 11 years)

Coil terminal No. and polarity (DC type)

	Polarity	2 Form C	3 Form C	4 Form C
Terminal	$(+)$	7	10	10
No.	$(-)$	2	2	1

REFERENCE DATA

1. Life curve

2. Max. switching capacity

DIMENSIONS (mm inch)
The CAD data of the products with
CAD Data
mark can be downloaded from: http://industrial.panasonic.com/ac/e
Plug-in type (2 Form C)

CAD Data

Compatible with tab terminal \#205 series receptacle.

Dimension:
Less than 2mm .079inch:
Min. 9 mm .354 inch less than 20 mm .787inch: $\pm 1 \pm .039$
Min. 20mm .787inch:

Schematic (Bottom view)

Plug-in type (3 Form C)

CAD Data

External dimensions

Compatible with tab terminal
$\# 187$ series receptacle.
Schematic (Bottom view)

Dimension:

Tolerance
Less than 2 mm .079inch:
$\pm 0.2 \pm .008$
Min. 2 mm .079 inch less than 9 mm .354inch: $\pm 0.5 \pm .020$
Min. 9 mm .354 inch less than 20 mm . 787 inch: $\pm 1 \quad \pm .039$
Min. 20mm .787inch:
$\pm 1.5 \pm .059$

Plug-in type (4 Form C)

CAD Data

External dimensions

Schematic (Bottom view)

Compatible with tab terminal \#205 series receptacle.

Dimension:
Less than 2 mm .079inch:
Min. 2mm .079inch less than 9 mm . 354 inch:
Min. 9 mm . 354 inch less than 20 mm . 787 inch:
Min. 20mm .787inch:

Tolerance $\pm 0.2 \pm .008$ $\pm 0.5 \pm .020$ $\pm 1 \quad \pm .039$ $\pm 1.5 \pm .059$

TM type
(2 Form C)
CAD Data

Dimension:
Less than 2 mm .
Min. 2mm .079inch
less than 9 mm .354 inch: $\pm 0.5 \pm .020$
Min. 9mm .354inch
less than $20 \mathrm{~mm} .787 \mathrm{inch}: \pm 1 \quad \pm .039$
Min. 20mm .787inch: $\pm 1.5 \pm .059$

Tolerance: $\pm 0.1 \pm .004$ (Pitch for side-by-side mounting) Installed relay

SAFETY STANDARDS

UL/C-UL (Recognized)			CSA (Certified)
File No.	Contact rating	File No.	Contact rating
E43028	10A 250V AC, $1 / 3 \mathrm{HP} 125,250 \mathrm{~V} \mathrm{AC}, \mathrm{10A} \mathrm{30V} \mathrm{DC}$	LR26550 etc.	10A 250V AC, $1 / 3 \mathrm{HP} 125,250 \mathrm{~V} \mathrm{AC,10A} \mathrm{30V} \mathrm{DC}$

For Cautions for Use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Panasonic manufacturer:
Other Similar products are found below :
ECE-A1HKAR47 ELK-EA102FA ELC-09D151F EEC-S0HD224H ELL-5PS3R3N HC2-H-DC48V-F HL2-HP-AC120V-F HL2-HP-DC12V-F HL2-HP-DC6V-F HL2-HP-DC24V-F HC4-H-DC24V HL2-HTM-DC24V-F HL2-HTM-AC24V-F HC3-HL-AC120V-F HC4-HAC120V AMV9003 EEC-RG0V155H AZH2031 RP-SDMF64DA1 RP-SDMF32DA1 EEF-UD0K101R RP-SMLE08DA1 EVMF6SA00B55 ELC-12D101E ERA-3YEB272V EEC-RF0V684 ERA-3YEB153V ELC-3FN2R2N ERA-3YEB512V ERJ-1GEJ564C ERZV20R391 ELL-6RH221M ETQ-P3W3R3WFN ELL-ATV681M ELL-VGG4R7N EEF-UD0J101R ECQ-U2A474ML LC-R121R3P ELKEA100FA EVP-AKB11A ECQ-U2A154ML ELK-E101FA ERA-3YEB303V ERA-V15J100V ERZ-V05V680CB EEF-UE0K101R EECS0HD224V EVQ-PAC05R EVQ-PAG04M ELK-EA222FA

