Panasonic ideas for life

LT4H Timers

RoHS Directive compatibility information http://www.nais-e.com/

DIN 48 SIZE

 DIGITAL TIMER
LT4H/-L Timers

UL File No.: E122222
 C-UL File No.: E122222

Features

1. Bright and Easy-to-Read Display A brand new bright 2 -color back light LCD display. The easy-to-read screen in any location makes checking and setting procedures a cinch.

2. Simple Operation

Seesaw buttons make operating the unit even easier than before.
3. Short Body of only 64.5 mm 2.539 inch (screw terminal type) or $\mathbf{7 0 . 1 ~ m m}$ 2.760 inch (pin type)

With a short body, it is easy to install in even narrow control panels.

4. Conforms to IP66's Weather

Resistant Standards

The water-proof panel keeps out water and dirt for reliable operation even in poor environments.
5. Screw terminal (M3.5) and Pin
Types are Both Standard Options The two terminal types are standard options to support either front panel installation or embedded installation.

6. Changeable Panel Cover

Also offers a black panel cover to meet your design considerations.
7. Compliant with UL, c-UL and CE.

Product types

Time range	Operating mode	Output	Operating voltage	Power down insurance	Terminal type	Part number

[^0]
LT4H-L Timers

UL File No.: E122222
C-UL File No.: E122222
${ }^{\text {c }} \mathbf{7 4} \mathrm{N}_{\mathrm{us}}$ (ϵ

Features

1. Economically priced in anticipation of market needs.

- Economically priced to provide excellent cost performance.

2. Display is a bright reflective-type LCD.
3. Inherits all of the characteristics of the LT4H digital timer.

- Seesaw switches ensure easy operation.
- IP66 environmental protection.
- Shortened body (70.1 mm 2.760 inch underhead).

Product types

Product name	Time range	Operating mode	Output	Operating voltage	Power down insurance	Terminal type	Part number
LT4H-L digital timer	$\begin{aligned} & 9.999 \mathrm{~s}(0.001 \mathrm{~s} \sim) \\ & 99.99 \mathrm{~s}(0.01 \mathrm{~s} \sim) \\ & 999.9 \mathrm{~s}(0.1 \mathrm{~s} \sim) \\ & 9999 \mathrm{~s}(1 \mathrm{~s} \sim) \\ & 99 \mathrm{~min} 59 \mathrm{~s}(1 \mathrm{~s} \sim) \\ & 999.9 \min (0.1 \mathrm{~min} \sim) \\ & 99 \mathrm{~h} 59 \min (1 \mathrm{~min} \sim) \\ & 999.9 \mathrm{~h}(0.1 \mathrm{~h} \sim) \end{aligned}$	Power ON delay (1) Power ON delay (2) Signal ON delay Signal OFF delay Pulse One-shot Pulse ON-delay Signal Flicker Totalizing ON-delay (8 modes)	Relay$(1 \mathrm{c})$	100 to 240 V AC	Available	8 pins	LT4HL8-AC240V
				24 V AC/DC			LT4HL8-AC24V
				12 to 24 V DC			LT4HL8-DC24V
			Transistor (1 a)	100 to 240 V AC			LT4HLT8-AC240V
				$24 \mathrm{~V} \mathrm{AC/DC}$			LT4HLT8-AC24V
				12 to 24 V DC			LT4HLT8-DC24V

Part names

Specifications

Type Item			Ralay output type		Transistor output type	
			AC type AC/DC type	DC type	AC type AC/DC type	DC type
Rating	Rated operating voltage		$\begin{gathered} 100 \text { to } 240 \mathrm{~V} \mathrm{AC}, 24 \mathrm{~V} \mathrm{AC}, \\ 24 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \hline \end{gathered}$	12 to 24 V DC	$\begin{gathered} 100 \text { to } 240 \mathrm{~V} \mathrm{AC}, 24 \mathrm{~V} \mathrm{AC}, \\ 24 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \hline \end{gathered}$	12 to 24 V DC
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common	-	$50 / 60 \mathrm{~Hz}$ common	-
	Rated power consumption		Max. 10 V A	Max. 3 W	Max. 10 V A	Max. 3 W
	Rated control capacity		$5 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$		$100 \mathrm{~mA}, 30 \mathrm{~V}$ DC	
	Time range		$9.999 \mathrm{~s}, 99.99 \mathrm{~s}, 999.9 \mathrm{~s}, 9999 \mathrm{~s}, 99 \mathrm{~min} 59 \mathrm{~s}, 999.9 \mathrm{~min}, 99 \mathrm{~h} 59 \mathrm{~min}, 999.9 \mathrm{~h}$ (selected by DIP switch)			
	Time counting direction		Addition (UP)/Subtraction (DOWN) (2 directions selectable by DIP switch)			
	Operation mode		A (Power ON delay 1), A2 (Power ON delay 2), B (Signal ON delay), C (Signal OFF delay), D (Pulse one-shot), E (Pulse ON delay), F (Signal Flicker), G (Totalizing ON delay) (selectable by DIP switch)			
	Start/Reset/Stop input		Min. input signal width: $1 \mathrm{~ms}, 20 \mathrm{~ms}$ (2 directions by selected by DIP switch) (The 8-pin type does not have a stop input.)			
	Lock input		Min. input signal width: 20 ms (The 8-pin type does not have a lock input.)			
	Input signal		Open collector input Input impedance: Max. $1 \mathrm{k} \Omega$; Residual voltage: Max. 2 V Open impedance: $100 \mathrm{k} \Omega$ or less, Max. energized voltage: 40 V DC			
	Indication		7-segment LCD (LT4H, LT4H-L common), Elapsed value (backlight red LED), Setting value (backlight yellow LED)			
	Power failure memory method		EEP-ROM (Min. 10^{5} overwriting)			
Time accuracy (max.)	Operating time fluctuation		$\pm(0.005 \%+50 \mathrm{~ms})$ in case of power on start $\pm(0.005 \%+20 \mathrm{~ms})$ in case of input signal start Timed-out 1 Form C		$\left[\begin{array}{l} \text { Operating voltage: } 85 \text { to } 110 \% \\ \text { Temperature: }-10 \text { to }+55^{\circ} \mathrm{C}+14 \text { to }+131^{\circ} \mathrm{F} \\ \text { Min. input signal width: } 1 \mathrm{~ms} \end{array}\right]$	
	Temperature error					
	Voltage error					
	Setting error					
Contact	Contact arrangement				Timed-out 1 Form A (Open collector)	
	Contact resistance (Initial value)		$100 \mathrm{~m} \Omega$ (at 1 A 6 V DC)		-	
	Contact ma		Ag alloy/Au flash		-	
Life	Mechanical (contact)		Min. 2×10^{7} ope. (Except for switch operation parts)		-	
	Electrical (contact)		1.0×10^{5} ope. (At rated control voltage)		Min. 10^{7} ope. (At rated control voltage)	
Electrical	Allowable operating voltage range		85 to 110% of rated operating voltage			
	Breakdown voltage (Initial value)		2,000 Vrms for 1 min : Between live and dead metal parts (11-pin) 2,000 Vrms for 1 min : Between input and output 1,000 Vrms for 1 min : Between contacts		2,000 Vrms for 1 min: Between live and dead metal parts (Pin type) 2,000 Vrms for 1 min: Between input and output	
	Insulation resistance (Initial value)		Min. $100 \mathrm{M} \Omega$: Between live and dead metal partsBetween input and output Between contacts\quad (At 500 V DC)		Min. $100 \mathrm{M} \Omega: \begin{aligned} & \text { Between live and dead metal parts } \\ & \text { Between input and output }\end{aligned}$ (At 500V DC)	
	Operating voltage reset time		Max. 0.5 s			
	Temperature rise		Max. $65^{\circ} \mathrm{C}$(under the flow of nominal operating current at nominal voltage)		-	
Mechanical	Vibration resistance	Functional	10 to 55 Hz : 1 cycle/min single amplitude of 0.35 mm .014 inch (10 min on 3 axes)			
		Destructive	10 to $55 \mathrm{~Hz}: 1$ cycle/min single amplitude of 0.75 mm .030 inch (1 h on 3 axes)			
	Shock resistance	Functional	Min. $98 \mathrm{~m} 321.522 \mathrm{ft} / \mathrm{s}^{2}$ (4 times on 3 axes)			
		Destructive	Min. 294 m 964.567 ft //s ${ }^{2}$ (5 times on 3 axes)			
Operating conditions	Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}+14^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}$			
	Ambient humidity		Max. 85 \% RH (non-condensing)			
	Air pressure		860 to $1,060 \mathrm{~h} \mathrm{~Pa}$			
	Ripple rate		-	20% or less	-	20% or less
Connection			8-pin/11-pin/screw terminal			
Protective construction			IP66 (front panel with rubber gasket)			

Applicable standard

Safety standard	EN61812-1	Pollution Degree 2/Overvoltage Category II
EMC	(EMI)EN61000-6-4 Radiation interference electric field strength Noise terminal voltage (EMS)EN61000-6-2 Static discharge immunity RF electromagnetic field immunity EFT/B immunity Surge immunity Conductivity noise immunity Power frequency magnetic field immunity Voltage dip/Instantaneous stop/Voltage fluctuation immunity	EN55011 Group1 ClassA EN55011 Group1 ClassA

Screw terminal type (Flush mount)

Pin type
(Flush mount/Surface mount)

- Dimensions for embedded installation (with adapter installed)

Screw terminal type
Pin type

- Dimensions for front panel installations

- Installation panel cut-out dimensions

The standard panel cut-out dimensions are shown below. Use the mounting frame (AT8-DA4) and rubber gasket (ATC18002).

- For connected installations

Note) 1: The installation panel thickness should be between 1 and 5 mm .039 and .197 inch.
2: For connected installations, the waterproofing ability between the unit and installation panel is lost.

Terminal layouts and Wiring diagrams

- 8-pin type

Relay output type

- Screw terminal type

Relay output type

-11-pin type
Transistor output type

Transistor output type

Note) For connecting the output leads of the transistor output type, refer to 5) Transistor output on page 48.

Setting the operation mode, time range, and time

Setting procedure 1) Setting the operation mode and time range

Set the operation mode and time range with the DIP switches on the side of the LT4H timer.

DIP switches Table 1: Setting the operation mode

	Item	DIP switch		DIP switch No.			Operation mode
		OFF	ON	1	2	3	
1	Operation mode	Refer to table 1		ON	ON	ON	A: Power on delay 1
2				OFF	OFF	OFF	A2: Power on delay 2
3				ON	OFF	OFF	B: Signal on delay
*4	Minimum input reset, start, and stop signal width	20 ms	1 ms	OFF	ON	OFF	C: Signal off delay
				ON	ON	OFF	D: Pulse One shot
5	Time delay direction	Addition	Subtraction	OFF	OFF	ON	E: Pulse On delay
6	Time range	Refer to table 2		ON	OFF	ON	F: Signal Flicker
7				OFF	ON	ON	G: Totalizing On delay

Table 2: Setting the time range
The 8-pin type does not have the stop input, so that the dip switch can be changed over between reset and start inputs. The signal range of the lock input is fixed (minimum 20 ms).

DIP switch No.			Time range
6	7	8	
ON	ON	ON	0.001 s to 9.999 s
OFF	OFF	OFF	0.01 s to 99.99 s
ON	OFF	OFF	0.1 s to 999.9 s
OFF	ON	OFF	1 s to 9999 s
ON	ON	OFF	0 min 01 s to 99 min 59 s
OFF	OFF	ON	0.1 min to 999.9 min
ON	OFF	ON	0 h 01 min to 99 h 59 min
OFF	ON	ON	0.1 h to 999.9 h

Notes: 1) Set the DIP switches before installing the timer.
2) When the DIP SW setting is changed, turn off the power once.
3) The DIP switches are set as ON before shipping.

Setting procedure 2) Setting the time

Set the set time with the keys (UP and DOWN keys) on the front of the LT4H timer.
Front display section
(1) Elapsed time display

2 Set time display
(3) Time delay indicator
(4) Controlled output indicator
(5) Reset indicator
(6) Lock indicator
(7) Time units display

- Changing the set time

1. It is possible to change the set time with the up and down keys even during time delay with the timer.
However, be aware of the following points.
1) If the set time is changed to less than the elapsed time with the time delay set to the addition direction, time delay will continue until the elapsed time reaches full scale, returns to zero, and then reaches the new set time. If the set time
is changed to a time above the elapsed time, the time delay will continue until the elapsed time reaches the new set time. 2) If the time delay is set to the subtraction direction, time delay will continue until " 0 " regardless of the new set time. 2. If the set time is changed to " 0 ," the unit will operate differently depending on the operation mode.
2) If the operation mode is set to A
(power on delay 1) or A2 (power on
3) UP keys

Changes the corresponding digit of the set time in the addition direction (upwards)
(9) DOWN keys

Changes the corresponding digit of the set time in the subtraction direction (downwards)
(10) RESET switch

Resets the elapsed time and the output
(11) LOCK switch

Locks the operation of all keys on the unit

- Power failure memory

The EEPROM is used for power failure memory. It has a life of Min. 10^{5} over-writings.
The EEPROM is overwriting with the following timing.

Output mode	Overwrite timing
Power ON delay (2) A2	When power is OFF
Addition G	Change of preset value or start, reset input When power is OFF after being ON
Other modes	When power is OFF after changing preset value

[^1]Operation mode

Operation type	Explanation	Time chart
Power on delay (1) (A)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value and starts time delay at power ON. - After timer completion, stops at the display of the set value (addition), or stops at " 0 " (subtraction). - Ignores start input. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF.	
Power on delay (2) (A2)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Elapsed time value does not clear at power ON. (power outage countermeasure function) - The output remains ON even after the power is cut and restarted. - After timer completion, stops at the display of the set value (addition), or stops at " 0 " (subtraction). - Ignores start input. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF.	
Signal on delay (B)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value at power ON. - Time delay starts at start ON and elapsed time value or output resets at start OFF. - Instantaneous time delay start at reset OFF and power ON while start is ON. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF. - In order to have the time delay start at power ON or reset at power OFF, short out the start input beforehand.	
Signal off delay (C)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value at power ON. - Output control ON at start ON and time delay start at start OFF. - Elapsed time value clears when start goes ON again during time delay. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF.	

Notes: 1) Each signal input (start, reset, stop, and lock) is applied by shorting their input terminal to the common terminal (terminal (1) for the 8 -pin type, terminal (3) for the 11-pin type, and terminal 6 for the screw terminal type).
2) The 8-pin type does not have a stop input or lock input.

Operation type	Explanation	Time chart
Pulse One-shot (D)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value at power ON. - Time delay starts and output control ON at start ON. - Turns output control OFF and clears elapsed time value at time-up. - Ignores start input during time delay. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF. - In order to have the time delay start at power ON or reset at power OFF, short out the start input beforehand.	
Pulse On delay (E)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value at power ON. - Time delay starts at start ON. - Ignores start input during time delay. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF. - In order to have the time delay start at power ON or reset at power OFF, short out the start input beforehand.	
Signal Flicker (F)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value at power ON. - Time delay starts at start ON. - Ignores start input during time delay. - Output control reverses, elapsed time value clears, and timer delay starts at timer completion. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF. - In order to have the time delay start at power ON or reset at power OFF, short out the start input beforehand.	

- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the

1	2	3
OFF	ON	ON

- Elapsed time value does not clear at power ON. (power outage countermeasure function)
- The output remains ON even after the power is off and restarted.
- Stops delay time operation at stop ON.

Restarts delay time operation at stop OFF.

[^2]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
79237785 H3DS-GL AC24-230/DC24-48 H5AN-4DM DC12-24 H5CN-XDNM AC100-240 H5CN-YAN AC100-240 H5CX-L8S-N AC100240 H3AMNSCAC100240 H3AM-NSR-B AC100-240 H3CA-8 DC12 H3CR-A8-302 DC24 H3CR-F AC24-48/DC12-48 H3CR-G8EL AC200-240 H5AN-4D DC12-24 8150694488225029 H5S-YB4-X H3CR-A-301 AC100-240/DC100-125 H3CR-AS AC24-48/DC12-48 H3DK-GE AC240-440 H3RN-2 AC24 H3RN-21 AC24 H3CR-H8RL AC/DC24 M H3CR-H8RL AC100-120 S H3CR-G8EL-31 AC100-120 H3CR-H8RL AC100-120 M H3CR-HRL AC100-120 M H3CR-A8-301 AC24-48/DC12-48 H3AM-NSR-C AC100-240 H3CR-H8RL AC/DC24 S H7AN-2D DC12-24 H5CN-XANS DC12-48 H3CA-8 DC110 H7AN-W4DM DC12-24 H7AN-4DM DC12-24 H7AN-4D DC1224 H7AN-RT6M AC100-240 H3CA-8H AC200/220/240 MTR17-BA-U240-116 PM4HSDM-S-AC240VS PM4HSDM-S-AC240VSW PO405 600DT-CU H3Y-2-B DC24 30S H3Y-2-B DC24 1S PM4HF8-M-DC24V PM4HS-H-DC12VSW H3Y-2-B AC100-120 10S H3Y-2-B AC100-120 30S H3C-R H3CR-A8-301 24-48AC/12-48DC

[^0]: * A rubber gasket (ATC18002) and a mounting frame (AT8-DA4) are included.

[^1]: * Be aware that the contents of EEPROM for all modes will be overwritten when power is turned OFF during input to external lock terminals (4) to (3) and 7 to 6 . Such an action does not exist by doing lock operation from the front.

[^2]: Notes: 1) Each signal input (start, reset, stop, and lock) is applied by shorting their input terminal to the common terminal (terminal (1) for the 8-pin type, terminal (3) for the 11-pin type, and terminal 6 for the screw terminal type).
 2) The 8-pin type does not have a stop input or lock input.

