Panasonic ideas for life

DIN 48 SIZE DIGITAL TIMER

LT4H-W
 Timers

UL File No.: E122222
 C-UL File No.: E122222

Features

1. Wide time range

The operation time range covers from 0.01 sec . to 9999 hours.

The individual setting can be performed on each of 1 and 2 timers.
99.99s 99min59s 99h59min
999.9s 999.9min 999.9h 9999s 9999h

2. Bright and Easy-to-Read Display

A brand new bright 2-color back light LCD display. The easy-to-read screen in any location makes checking and setting procedures a cinch.

3. Simple Operation

Seesaw buttons make operating the unit even easier than before.
4. Short Body of only 64.5 mm 2.539 inch (screw terminal type) or $\mathbf{7 0 . 1 ~ m m}$ 2.760 inch (pin type)

With a short body, it is easy to install in even narrow control panels.

5. Conforms to IP66's Weather Resistant Standards

The water-proof panel keeps out water and dirt for reliable operation even in poor environments.
6. Screw terminal (M3.5) and Pin Types are Both Standard Options The two terminal types are standard options to support either front panel installation or embedded installation.

7. Changeable Panel Cover

Also offers a black panel cover to meet your design considerations.

8. Compliant with UL, c-UL and CE.

9. Low Price

All this at an affordable price to provide you with unmatched cost performance.

RoHS Directive compatibility information
http://www.nais-e.com/

mm inch
৪-pın type
8-pin type

11-pin type Screw terminal type

LT4H-W

Part names

Specifications

Item			Ralay output type		Transistor output type	
			AC type	DC type	AC type	DC type
Rating	Rated operating voltage		100 to 240 V AC, 24 V AC	12 to 24 V DC	100 to 240 V AC, 24 V AC	12 to 24 V DC
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common	-	$50 / 60 \mathrm{~Hz}$ common	-
	Rated power consumption		Max. 10 V A	Max. 3 W	Max. 10 V A	Max. 3 W
	Rated control capacity		$5 \mathrm{~A}, 250 \mathrm{~V}$ AC		$100 \mathrm{~mA}, 30 \mathrm{~V}$ DC	
	Time range		99.99s, 999.9s, 9999s, 99min59s, 999.9min, 99h59min, 999.9h, 9999h (selected by DIP switch)			
	Time counting direction		Addition (UP)/Subtraction (DOWN) (2 directions selectable by DIP switch)			
	Operation mode		Pulse input: Delayed one shot, OFF-start flicker or ON-start flicker Integrating input: Delayed one shot, OFF-start flicker or ON-start flicker			
	Start/Reset/Stop input		Min. input signal width: $1 \mathrm{~ms}, 20 \mathrm{~ms}$ (2 directions by selected by DIP switch) (The 8 pin type does not have a stop input.)			
	Lock input		Min. input signal width: 20 ms (The 8-pin type does not have a lock input.)			
	Input signal		Open collector input Input impedance: Max. $1 \mathrm{k} \Omega$; Residual voltage: Max. 2 V Open impedance: $100 \mathrm{k} \Omega$ or less, Max. energized voltage: 40 V DC			
	Indication		7-segment LCD, Elapsed value (backlight red LED), Setting value (backlight yellow LED)			
	Power failure memory method		EEP-ROM (Min. 10^{5} overwriting)			
Time accuracy (max.)	Operating time fluctuation		$\pm(0.005 \%+50 \mathrm{~ms})$ in case of power on start $\pm(0.005 \%+20 \mathrm{~ms})$ in case of input signal start		$\left[\begin{array}{l}\text { Operating voltage: } 85 \% \text { to } 110 \% \\ \text { Temperature: }-10^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C}+14^{\circ} \mathrm{F} \text { to }+131^{\circ} \mathrm{F} \\ \text { Min. input signal width: } 1 \mathrm{~ms}\end{array}\right]$	
	Temperature error					
	Voltage error					
	Setting error					
Contact	Contact arrangement		Timed-out 1 Form C		Timed-out 1 Form A (Open collector)	
	Contact resistance (Initial value)		$100 \mathrm{~m} \Omega$ (at 1 A 6 V DC)		-	
	Contact ma		Ag alloy/Au flash		-	
Life	Mechanical (contact)		Min. 2×10^{7} ope. (Except for switch operation parts)		-	
	Electrical (contact)		Min. 10^{5} ope. (At rated control voltage)		Min. 10^{7} ope. (At rated control voltage)	
Electrical	Allowable operating voltage range		85 to 110% of rated operating voltage			
	Breakdown voltage (Initial value)		2,000 Vrms for 1 min: Between live and dead metal parts (11-pin type only) 2,000 Vrms for 1 min: Between input and output 1,000 Vrms for 1 min: Between contacts		2,000 Vrms for 1 min: Between live and dead metal parts (Pin type only) $2,000 \mathrm{Vrms}$ for 1 min : Between input and output	
	Insulation resistance (Initial value)		Min. $100 \mathrm{M} \Omega:$Between live and dead metal parts Between input and output Between contacts (At 500V DC)		$\begin{aligned} & \text { Min. } 100 \mathrm{M} \Omega \text { : Between live and dead metal parts } \\ & \text { Between input and output } \end{aligned} \text { (At } 500 \mathrm{~V} \text { DC) }$	
	Operating voltage reset time		Max. 0.5 s			
	Temperature rise		$\operatorname{Max} 65^{\circ} \mathrm{C}$(under the flow of nominal operating current at nominal voltage)		-	
Mechanical	Vibration resistance	Functional	10 to $55 \mathrm{~Hz}: 1 \mathrm{cycle} / \mathrm{min}$ single amplitude of 0.35 mm .014 inch (10 min on 3 axes)			
		Destructive	10 to 55 Hz : 1 cycle/ min single amplitude of 0.75 mm .030 inch (1 h on 3 axes)			
	Shock resistance	Functional	Min. $98 \mathrm{~m} 321.522 \mathrm{ft} / \mathrm{s}^{2}$ (4 times on 3 axes)			
		Destructive	Min. 294 m 964.567 ft ./s² (5 times on 3 axes)			
Operating conditions	Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}+14^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}$			
	Ambient humidity		Max. 85 \% RH (non-condensing)			
	Air pressure		860 to $1,060 \mathrm{~h} \mathrm{~Pa}$			
	Ripple rate		-	20 \% or less	-	20 \% or less
Connection			8-pin/11-pin/screw terminal			
Protective construction			IP66 (front panel with rubber gasket)			

Applicable standard

Safety standard	EN61812-1	Pollution Degree 2/Overvoltage Category II
EMC	(EMI)EN61000-6-4 Radiation interference electric field strength Noise terminal voltage (EMS)EN61000-6-2 Static discharge immunity RF electromagnetic field immunity EFT/B immunity Surge immunity Conductivity noise immunity Power frequency magnetic field immunity Voltage dip/Instantaneous stop/Voltage fluctuation immunity	EN55011 Group1 ClassA EN55011 Group1 ClassA

Dimensions

- LT4H-W digital timer

Screw terminal type
(Flush mount)

Pin type
(Flush mount/Surface mount)

- Dimensions for flush mount (with adapter installed)

Screw terminal type
Pin type

- Dimensions for front panel installations

- Installation panel cut-out dimensions

The standard panel cut-out dimensions are shown below. Use the mounting frame (AT8-DA4) and rubber gasket (ATC18002).

- For connected installations

When n timers are continuously installed, the dimension (A) is calculated according to the following formula (n : the number of the timers to be installed):
$A=(48 \times n-2.5)_{0}^{+0.6} \quad A=(1.890 \times n-.098)^{+024}$
Note) 1: The installation panel thickness should be between 1 and 5 mm .039 and .197 inch.
2: For connected installations, the waterproofing ability between the unit and installation panel is lost.

Terminal layouts and Wiring diagrams

- 8-Pin type

Relay output type

- Screw terminal type

Relay output type

Transistor output type

Transistor output type

- 11-Pin type

Relay output type

Transistor output type

Note) For connecting the output leads of the transistor output type, refer to 5) Transistor output on page 48.

Setting the operation mode and time range

Setting procedure 1) Setting the time range (Timer $T_{1} /$ Timer T_{2})

Set the time range with the DIP switches on the side of the LT4H-W timer.

* The 8-pin type does not have the stop input, so that the dip switch can be changed over between reset and start inputs. The signal range of the lock input is fixed (minimum 20 ms).

(same for screw terminal type and 8-pin type.)

Setting procedure 2) Setting the operation mode

Table 1: Setting the time range (Timer T_{1})

DIP switch No.			Time range
1	2	3	
ON	ON	ON	0.01 s to 99.99 s
OFF	OFF	OFF	0.1 s to 999.9 s
ON	OFF	OFF	1 s to 9999 s
OFF	ON	OFF	0 min 01 s to 99 min 59 s
ON	ON	OFF	0.1 min to 999.9 min
OFF	OFF	ON	0 h 01 min to 99 h 59 min
ON	OFF	ON	0.1 h to 999.9 h
OFF	ON	ON	1 h to 9999 h

Table 2: Setting the time range (Timer T_{2})

DIP switch No.			Time range
6	7	8	
ON	ON	ON	0.01 s to 99.99 s
OFF	OFF	OFF	0.1 s to 999.9 s
ON	OFF	OFF	1 s to 9999 s
OFF	ON	OFF	0 min 01 s to 99 min 59 s
ON	ON	OFF	0.1 min to 999.9 min
OFF	OFF	ON	0 h 01 min to 99 h 59 min
ON	OFF	ON	0.1 h to 999.9 h
OFF	ON	ON	1 h to 9999 h

Notes: 1) Set the DIP switches before installing the timer.
2) When the DIP SW setting is changed, turn off the power once.
3) The DIP switches are set as ON before shipping. Set the operation mode with the keys on the front of the LT4H-W timer.

Front display section

(1) Elapsed time display
(2) Set time display
(3) T_{1} / T_{2} operation indicator
(4) T_{1} / T_{2} setting value selectable indicator
(5) Controlled output indicator
(6) Lock indicator
(7) Time units display

(8) UP keys

Changes the corresponding digit of the set time in the addition direction (upwards)
9) DOWN keys

Changes the corresponding digit of the set time in the subtraction direction (downwards)
(10) RESET switch

Resets the elapsed time and the output
(11) SET/LOCK switch

Changes over the display between $\mathrm{T}_{1} / \mathrm{T}_{2}$ settings, sets the operation mode, checks the operation mode and locks the operation of each key
(such as up, down or reset key).
Ex: Setting operation mode display
(PULSE-A example)

(1) When the UP or DOWN key at the first digit is pressed with the SET/LOCK switch pressed, the mode is changed over to the setting mode.
(2) Now release the SET/LOCK switch.
(3) The operation mode in the setting mode is changed over sequentially in the left or right direction by pressing the UP or DOWN key at the first digit, respectively.

(4) The operational mode displayed at present is set by pressing the RESET switch, and the display returns to the normal condition.
2) Setting (changing) the time
(1) Pressing the SET/LOCK key switches the set value display between T1 and T2. Display the timer (T1 or T2) which is to be set (or changed).
(2) After displaying the timer (T 1 or T 2) which is to be set, press the UP or DOWN key to change the time.

- Checking the operation mode

When the UP or DOWN key at the second digit is pressed with the SET/LOCK switch pressed, the operational mode can be checked.
The display returns to the normal condition after indicating the operational mode for about two seconds. (While the display indicates the operational mode for about two seconds, the other indicators continue to operate normally.)

- Setting the lock

When the UP or DOWN key at the fourth digit is pressed with the SET/LOCK switch pressed, all keys on the unit are locked.
The timer does not accept any of UP, DOWN and RESET keys.
To release the lock setting, press the UP or DOWN key at the fourth digit again with the set/lock switch pressed.

* Operational mode, adding and subtracting and minimum input signal range cannot be set at T_{1} and T_{2}, respectively.
- Changing over the $\mathrm{T}_{1} / \mathrm{T}_{2}$ setting display

The T1/T2 setting display is changed over by pressing the SET/LOCK switch. (This operation gives no effect on the other operations. The set time and elapsed time (residual time) at T_{1} are linked with those at T_{2}.)

- Changing the set time

1) It is possible to change the set time with the UP and DOWN keys even during time delay with the timer. However, be aware of the following points.
(1) If the set time is changed to less than the elapsed time with the time delay set to the addition direction, time delay will continue until the elapsed time reaches full scale, returns to zero, and then reaches the new set time. If the set time is changed to a time above the elapsed time, the time delay will continue until the elapsed time reaches the new set time.
(2) If the time delay is set to the subtraction direction, time delay will continue until " 0 " regardless of the new set time.
2) When the set times at T_{1} and T_{2} are set to 0 , the output becomes $O N$ only while the start input is carried out. However, while the reset input is carried out, the output becomes OFF.

OPERATION MODE

	PULSE: Pulse input	INTEGRATION : Integrating input
A Delayed one shot	A OFF-start/1 operation $\mathrm{t}_{1}<\mathrm{T}_{1}, \mathrm{t}_{2}<\mathrm{T}_{2}$ - Elapsed value cleared when power is turned on. - Time limit start initiated when start input goes on; start input ignored if time limit interval is in progress. - Elapsed value cleared when one operation has been completed.	- Elapsed value not cleared when power is turned on (power failure backup function). - When power is turned back on, same status is maintained for output as that previous to power going off. - Elapsed value cleared when one operation has been completed.
\square B OFF-start flicker	PULSE B OFF-start/repeating operation $\mathrm{t}_{1}<\mathrm{T}_{1}, \mathrm{t}_{2}<\mathrm{T}_{2}$ - Elapsed value cleared when power is turned on. - Time limit start initiated when start input goes on; start input ignored if time limit interval is in progress.	INTEGRATION B OFF-start/repeating operation $\mathrm{t}_{1}<\mathrm{T}_{1}, \mathrm{t}_{2}<\mathrm{T}_{2}$ - Elapsed value not cleared when power is turned on (power failure backup function). - When power is turned back on, same status is maintained for output as that previous to power going off.
\mathbf{C} ON-start flicker	PULSE C ON-start/repeating operation $\mathrm{t}_{1}<\mathrm{T}_{1}, \mathrm{t}_{2}<\mathrm{T}_{2}$ - Elapsed value cleared when power is turned on. - Time limit start initiated when start input goes on; start input ignored if time limit interval is in progress.	INTEGRATION ON-start/repeating operation $\mathrm{t}_{1}<\mathrm{T}_{1}, \mathrm{t}_{2}<\mathrm{T}_{2}$ - Elapsed value not cleared when power is turned on (power failure backup function). -When power is turned back on, same status is maintained for output as that previous to power going off.
Remarks and notes	- The pulse input mode starts the operation by starting the start input. - When using the unit by starting it with the power on, shortcircuit the start terminal (8-pin: (1) to (4), 11-pin: (3) to (6) and screw terminal: 6 to 9).	- The integrating input mode is operated by the integrated time of the start input. In other word, the timer operates only when the start input is performed. - When the elapsed value is cleared by the reset input, the output is reset. - When using the unit by starting it with the power on, shortcircuit the start terminal (8-pin: (1) to (4), 11-pin: (3) to (6) and screw terminal: 6 to 9).

- Each signal input such as start, reset, stop and lock inputs is applied by short-circuiting its input terminal and common terminal (8-pin type: terminal (1), 11-pin type: terminal (3) and screw terminal: terminal 6) respectively.
- The 8-pin type does not have a stop input or lock input.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
79237785 H3DS-GL AC24-230/DC24-48 H5AN-4DM DC12-24 H5CN-XDNM AC100-240 H5CN-YAN AC100-240 H5CX-L8S-N AC100240 H3AMNSCAC100240 H3AM-NSR-B AC100-240 H3CA-8 DC12 H3CR-A8-302 DC24 H3CR-F AC24-48/DC12-48 H3CR-G8EL AC200-240 H5AN-4D DC12-24 8150694488225029 H5S-YB4-X H3CR-A-301 AC100-240/DC100-125 H3CR-AS AC24-48/DC12-48 H3DK-GE AC240-440 H3RN-2 AC24 H3RN-21 AC24 H3CR-H8RL AC/DC24 M H3CR-H8RL AC100-120 S H3CR-G8EL-31 AC100-120 H3CR-H8RL AC100-120 M H3CR-HRL AC100-120 M H3CR-A8-301 AC24-48/DC12-48 H3AM-NSR-C AC100-240 H3CR-H8RL AC/DC24 S H7AN-2D DC12-24 H5CN-XANS DC12-48 H3CA-8 DC110 H7AN-W4DM DC12-24 H7AN-4DM DC12-24 H7AN-4D DC1224 H7AN-RT6M AC100-240 H3CA-8H AC200/220/240 MTR17-BA-U240-116 PM4HSDM-S-AC240VS PM4HSDM-S-AC240VSW PO405 600DT-CU H3Y-2-B DC24 30S H3Y-2-B DC24 1S PM4HF8-M-DC24V PM4HS-H-DC12VSW H3Y-2-B AC100-120 10S H3Y-2-B AC100-120 30S H3C-R H3CR-A8-301 24-48AC/12-48DC

