2a2b/3a1b/4a 4A polarized power relays

S RELAYS

2. Strong resistance to vibration and shock
Use of 4G-BA technology realizes strong resistance to vibration and shock.
3. High reliability and long life

Our application of 4G-BA technology, along with almost perfectly complete twin contact, ensures minimal contact bounce and high reliability.
4. Ability to provide wide-ranging control
Use of 4G-BA technology with goldclad silver alloy contacts in a twin contact structure enables control across a broad range from microcurrents of $100 \mu \mathrm{~A} 100 \mathrm{mV}$ DC to 4 A 250 V AC.
5. Latching types available With 4G-BA technology, as well as single side stable types, convenient 2 coil latching types for circuit memory applications are also available.
6. Wide variety of contact formations available
The compact size of the $4 \mathrm{G}-\mathrm{BA}$ mechanism enables the provision of many kinds of package, including $2 a 2 b, 3 a 1 b$, and $4 a$. These meet your needs across a broad range of applications.
7. Low thermal electromotive force High sensitivity (low power consumption) is realized by 4G-BA technology. Separation of the coil and spring sections has resulted in a relay with extremely low levels of thermal electromotive force (approx. $3 \mu \mathrm{~V}$).
8. DIL terminal array

Deployed to fit a 2.54 mm .100 inch grid, the terminals are presented in DIL arrays which match the printed circuit board terminal patterns commonly in international use.
9. Relays that push the boundaries of relay efficiency
High-density S relays take you close to the limits of relay efficiency.
10. Sockets are available.

TYPICAL APPLICATIONS

Telecommunications equipment, data processing equipment, facsimiles, alarm equipment, measuring equipment.

FEATURES

1. Compact with high sensitivity The high-efficiency polarized electromagnetic circuits of the 4-gap balanced armature and our exclusive spring alignment method achieves, with high-sensitivity in a small package, a relay that can be directly controlled by a driver chip.

Panasonic Corporation, provides a highly efficient polarized magnetic circuit structure that is both highly sensitive and has a small form factor. Moreover, suitability for provision with many types of contact array and other advantages promise to make it possible to provide many of the various characteristics that are coming to be demanded of relays.

HOW IT WORKS (single side stable type)

Abstract

1) When current is passed through the coil, the yoke becomes magnetic and polarized. 2) At either pole of the armature, repulsion on one side and attraction on the other side is caused by the interaction of the poles and the permanent magnets of the armature. 3) At this time, opening and closing operates owing to the action of the simultaneously moulded balanced armature mechanism, so that when the force of the contact breaker spring closes the contact on one side, on the other side, the balanced armature opens the contact (2a2b).

ORDERING INFORMATION

Contact arrangement
2: 2 Form A 2 Form B
3: 3 Form A 1 Form B
4: 4 Form A
Operating function
Nil: Single side stable
L: 1 coil latching ${ }^{*}$
L2: 2 coil latching
Nominal coil voltage (DC)
$3,5,6,12,24,48 \mathrm{~V}$
Note: *1 coil latching type are manufactured by lot upon receipt of order.

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
2 Form A 2 Form B	3V DC	S2EB-3V	S2EB-L2-3V
	5 V DC	S2EB-5V	S2EB-L2-5V
	6 V DC	S2EB-6V	S2EB-L2-6V
	12 V DC	S2EB-12V	S2EB-L2-12V
	24V DC	S2EB-24V	S2EB-L2-24V
	48 V DC	S2EB-48V	S2EB-L2-48V
3 Form A 1 Form B	3 V DC	S3EB-3V	S3EB-L2-3V
	5 V DC	S3EB-5V	S3EB-L2-5V
	6 V DC	S3EB-6V	S3EB-L2-6V
	12 V DC	S3EB-12V	S3EB-L2-12V
	24V DC	S3EB-24V	S3EB-L2-24V
	48V DC	S3EB-48V	S3EB-L2-48V
4 Form A	3V DC	S4EB-3V	S4EB-L2-3V
	5V DC	S4EB-5V	S4EB-L2-5V
	6 V DC	S4EB-6V	S4EB-L2-6V
	12 V DC	S4EB-12V	S4EB-L2-12V
	24V DC	S4EB-24V	S4EB-L2-24V
	48V DC	S4EB-48V	S4EB-L2-48V

Standard packing: Carton: 50 pcs.; Case: 500 pcs.

* Sockets available.

RATING

1. Coil data

1) Single side stable

Type	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & \text { [} \pm 10 \%] \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power	Max. applied voltage (at $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$)
Standard	3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	5.5 V DC
	5V DC			38.5 mA	130Ω	192 mW	9.0 V DC
	6V DC			33.3 mA	180Ω	200 mW	11.0 V DC
	12V DC			16.7 mA	720Ω	200 mW	22.0 V DC
	24V DC			8.4 mA	2,850 ${ }^{\text {a }}$	202mW	44.0 V DC
	48V DC			5.6 mA	8,500 Ω	271 mW	75.0V DC

2) 2 coil latching

Type	Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{aligned} & \text { Coil resistance }[\pm 10 \%] \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$		Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Max. applied } \\ \text { voltage } \\ \text { (at } 40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F} \text {) } \end{gathered}$
				Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
Standard	3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200 mW	200 mW	5.5V DC
	5V DC			38.5 mA	38.5 mA	130Ω	130Ω	192mW	192mW	9.0 V DC
	6V DC			33.7 mA	33.7 mA	180Ω	180Ω	200 mW	200 mW	11.0 V DC
	12 V DC			16.7 mA	16.7 mA	720Ω	720Ω	200mW	200 mW	22.0 V DC
	24V DC			8.4 mA	8.4 mA	2,850 Ω	2,850 Ω	202mW	202 mW	44.0 V DC
	48V DC			7.4 mA	7.4 mA	6,500 2	6,500 Ω	355 mW	355 mW	65.0 V DC

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A
	Contact resistance (Initial)		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Electrostatic capacitance (initial)		Approx. 3pF
	Contact material		Au clad Ag alloy (Cd free)
	Thermal electromotive force (at nominal coil voltage) (initial)		Approx. $3 \mu \mathrm{~V}$
Rating	Nominal switching capacity (resistive load)		$4 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}$,3 A 30 V DC
	Max. switching power (resistive load)		1,000 VA, 90 W
	Max. switching voltage		$250 \mathrm{~V} \mathrm{AC}$,48 V DC (30 to 48 V DC at less than 0.5 A)
	Max. switching current		$4 \mathrm{~A}(\mathrm{AC}), 3 \mathrm{~A}$ (DC)
	Min. switching capacity (Reference value)*1		$100 \mu \mathrm{~A} 100 \mathrm{~m}$ V DC
Electrical characteristics	Insulation resistance (Initial)		Min. 10,000M Ω (at 500 V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA .)
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA .)
		Between contact and coil	1,500 Vrms for 1 min . (Detection current: 10 mA .)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms [15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 4 mm
Expected life	Mechanical		Min. 10^{8} (at 50 cps)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}-67^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. 8 g .28 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES

3. Electrical life

Condition: Resistive load, at 20 times $/ \mathrm{min}$.

Types	Switching capacity	No. of operations
2 Form A 2Form B, 3 Form A 1 Form B, 4 Form A	4 A 250 V DC	Min. 1×10^{5}
	3 3 30V DC	Min. 2×10^{5}

REFERENCE DATA

1. Maximum switching power

Contact current, A
2. Life curve

4.-(2) Coil temperature rise Tested Sample: S4EB-24V, 4 Form A

3. Contact reliability

Condition: 1V DC, 1mA
Detection level 10Ω
Tasted Sample: S4EB-24V, 10pcs

5. Operate and release time (Single side stable type)
Tested Sample: S4EB-24V, 10pcs

6. Influence of adjacent mounting
$\rightarrow \| \leftrightarrow$
(1) (2) (3) $\begin{aligned} & \text { (1) \& (3) relays } \\ & \text { are energized }\end{aligned}$
Note: When installing an S-relay near another, and there is no effect from an external magnetic field, be sure to leave at least 10 mm .394 inch between relays in order to achieve the performance listed in the catalog.

\longrightarrow Inter-relay distance, mm

\longrightarrow Inter-relay distance, mm

7. Effect from an external magnetic field

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/

CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$
PC board pattern (Copper-side view)

Tolerance: $\pm 0.1 \pm .004$

SAFETY STANDARDS

UL/C-UL (Recognized)		CSA (Certified)	
File No.	Contact rating	File No.	Contact rating
E43028	4A 250V AC	LR26550	4A 250V AC
	3A 30V DC		3A 30V DC
	1/20HP 250V AC (FLA0.75A)		1/20HP 250V AC
	1/20HP 125V AC (FLA1.5A)		1/20HP 125V AC

NOTES

1. For cautions for use, please read "GENERAL APPLICATION GUIDELINES".
2. Based on regulations regarding insulation distance, there is a restriction on same-channel load connections between terminals No. 2, 3 and 4, 5, as well as between No. 8, 9 and 10, 11. See the figure below for an example.

- Between 2, 3 and 4, 5:
different channels, therefore not possible
- Between 10, 11 and 8,9 :
different channels, therefore not possible No good

3. Please note that when this relay (2 Form A 2 Form B type, 3 Form A 1 Form B type) operates and releases, contacts a and b may go ON at the same time.

SRELAYS PC BOARD SOCKET

DIMENSIONS (mm inch)
The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/

CAD Data External dimensions PC board pattern
(Copper-side view)

Tolerance: $\pm 0.1 \pm .004$

RoHS compliant

TYPES

Product name	Part No.
S Relays PC board socket	S-PS

SPECIFICATIONS

Maximum continuous current	4 A
Breakdown voltage	Note: Don't insert or remove relays while in the energized condition.
Insulation resistance	$1,500 \mathrm{Vrms}$ between terminals
Heat resistance	More than $100 \mathrm{M} \Omega$ between terminals at 500 V DC Mega

NOTES

Inserting and removing method
Inserting method: Insert the relay as shown in Fig. 1 unit the rib of the relay snaps into the clip of the socket.

Removing method:
(1) Remove the relay straight from the socket holding the shaded portion of the relay as shown in Fig. 2.

(2) When sockets are mounted in close proximity, use a slotted screw driver as shown in Fig. 3.

Electromechanical Control Business Division
■ 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

