Flat type safety relays (double contact)

## SF RELAYS <br> Double contact type



4 Form A 4 Form B

## RoHS compliant

## FEATURES

1. High contact reliability

High contact reliability is achieved through the use of a double contact.
2. Forced operation contacts
N.O. and N.C. side contacts are connected through a card so that one interacts with the other in movement. In case of a contact welding, the other keeps a min. 0.5 mm . 020 inch contact gap.
3. Independent operation contacts (4 Form A 4 Form B)
There are 4 points of forced operation contacts.
Each pair of contacts is free from the main armature and is independent from each other. So if a N.O. pair of contacts are welded, the other 3 N.O. contacts are not effected (operate properly) That enables to plan a circuit to detect welding or go back to the beginning condition. 4. Separated chamber structure N.O. and N.C. side contacts are put in each own space surrounded with a card and a body-separater. That prevents short circuit between contacts, which is caused by their springs welding or damaged.
5. High breakdown voltage

High breakdown voltage 2,500 Vrms between contacts and coil.
6. High sensitivity

Realizes thin shape and high sensitivity ( 500 mW nominal operating power) by utilizing high-efficiency polarized magnetic circuit with 4-gap balanced armature.
7. Complies with safety standards Standard products are UL, CSA, TÜV and SEV certified. Conform to European standards. TÜV certified. Complies with SUVA European standard.

## TYPICAL APPLICATIONS


#### Abstract

1. Industrial equipment such as presses and machine tools 2. Elevators and other kinds of hoisting mechanisms, conveyor equipment.


## ORDERING INFORMATION

Contact arrangement
2: 2 Form A 2 Form B
4: 4 Form A 4 Form B
Nominal coil voltage
DC 5, 12, 24, 48, 60V
Note: Certified by UL, CSA, TÜV and SEV

## TYPES

| Contact arrangement | Nominal coil voltage | Part No. |
| :---: | :---: | :---: |
| 2 Form A 2 Form B | 5V DC | SF2D-DC5V |
|  | 12 V DC | SF2D-DC12V |
|  | 24V DC | SF2D-DC24V |
|  | 48 V DC | SF2D-DC48V |
|  | 60 V DC | SF2D-DC60V |
| 4 Form A 4 Form B | 5 V DC | SF4D-DC5V |
|  | 12 V DC | SF4D-DC12V |
|  | 24V DC | SF4D-DC24V |
|  | 48 V DC | SF4D-DC48V |
|  | 60 V DC | SF4D-DC60V |

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

## RATING

1. Coil data

| Contact arrangement | Nominal coil voltage | Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | Nominal coil current $[ \pm 10 \%]$ <br> (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | $\begin{aligned} & \text { Coil resistance } \\ & \quad[ \pm 10 \%] \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text { ) } \end{aligned}$ | Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) | Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 Form A 2 Form B | 5V DC | $75 \% \mathrm{~V}$ or less of nominal voltage (Initial) | $10 \% \mathrm{~V}$ or more of nominal voltage (Initial) | 100 mA | $50 \Omega$ | 500 mW | $120 \% \mathrm{~V}$ of nominal voltage |
|  | 12V DC |  |  | 41.7 mA | $288 \Omega$ |  |  |
|  | 24V DC |  |  | 20.8 mA | 1,152 ${ }^{\text {a }}$ |  |  |
|  | 48 V DC |  |  | 10.4 mA | 4,608 |  |  |
|  | 60 V DC |  |  | 8.3 mA | 7,200 ${ }^{\text {a }}$ |  |  |
| 4 Form A 4 Form B | 5V DC | $75 \% \mathrm{~V}$ or less of nominal voltage (Initial) | $15 \% \mathrm{~V}$ or more of nominal voltage (Initial) | 100 mA | $50 \Omega$ | 500 mW |  |
|  | 12V DC |  |  | 41.7 mA | $288 \Omega$ |  |  |
|  | 24V DC |  |  | 20.8 mA | 1,152 ${ }^{\text {a }}$ |  |  |
|  | 48 V DC |  |  | 10.4 mA | 4,608 ${ }^{\text {a }}$ |  |  |
|  | 60 V DC |  |  | 8.3 mA | 7,200 ${ }^{\text {a }}$ |  |  |

## 2. Specifications

| Characteristics | Item |  | Specifications |  |
| :---: | :---: | :---: | :---: | :---: |
| Contact | Arrangement |  | 2 Form A 2 Form B | 4 Form A 4 Form B |
|  | Contact resistance (Initial) |  | Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A) |  |
|  | Contact material |  | Au-flashed $\mathrm{AgSnO}_{2}$ type |  |
| Rating | Nominal switching capacity (resistive load) |  | 6 A 250 V AC, 6A 30V DC |  |
|  | Max. switching power (resistive load) |  | 1,500VA 180W |  |
|  | Max. switching voltage |  | 440 V AC, 30 V DC |  |
|  | Max. switching current |  | 6A |  |
|  | Nominal operating power |  | 500 mW |  |
|  | Min. switching capacity (Reference value)* |  | 100 mA 5 V DC |  |
| Electrical characteristics | Insulation resistance (Initial) |  | Min. 1,000M (at 500V DC) Measurement at same location as "Breakdown voltage" section. |  |
|  | Breakdown voltage (Initial) | Between open contacts | $1,300 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA ) |  |
|  |  | Between contact sets | $2,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA ) |  |
|  |  | Between contact and coil | 2,500 Vrms for 1 min . (Detection current: 10 mA ) |  |
|  | Temperature rise (coil) (at $20^{\circ} 68^{\circ} \mathrm{F}$ ) |  | Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ <br> (By resistive method, nominal voltage applied to the coil; contact carrying current: 6A) |  |
|  | Operate time |  | Max. 30ms (Nominal voltage applied to the coil, excluding contact bounce time.) |  |
|  | Release time |  | Max. 15ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode) |  |
| Mechanical characteristics | Shock resistance | Functional | Min. $294 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$ ) |  |
|  |  | Destructive | Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ) |  |
|  | Vibration resistance | Functional | 10 to 55 Hz at double amplitude of 2 mm (Detection time: $10 \mu \mathrm{~s}$ ) |  |
|  |  | Destructive | 10 to 55 Hz at double amplitude of 2 mm |  |
| Expected life | Mechanical |  | Min. $10^{7}$ (at 180 times/min.) |  |
|  | Electrical |  | Min. $10^{5}$ (at 20 times/min.) |  |
| Conditions | Conditions for operation, transport and storage*2 |  | Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to $85 \%$ R.H. (Not freezing and condensing at low temperature) |  |
|  | Max. Operating speed |  | 180 times/min. |  |
| Unit weight |  |  | Approx. 38g 1.340z | Approx. 47g 1.66oz |

Notes: *1. This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load
*2. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

## REFERENCE DATA

1. Operate/release time (without diode)

Tested sample: SF2D-DC24V (2 Form A 2 Form B)
Quantity: $\mathrm{n}=20$

2. Temperature rise

Tested sample: SF4D-DC24V (4 Form A 4 Form B)
Quantity: $\mathrm{n}=6$
Coil applied voltage: $100 \% \mathrm{~V}, 120 \% \mathrm{~V}$
Contact carry current: 6A

3. Ambient temperature characteristics Tested sample: SF4D-DC24V (4 Form A 4 Form B) Quantity: $\mathrm{n}=6$


DIMENSIONS (mm inch)

1. 2 Form A 2 Form B

## CAD Data



External dimensions


General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)


PC board pattern (Bottom view)


Tolerance: $\pm 0.1 \pm .004$
2. 4 Form A 4 Form B


General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)


PC board pattern (Bottom view)


Tolerance: $\pm 0.1 \pm .004$

## SAFETY STANDARDS

| UL/C-UL (Recognized) |  | TÜV (Certified) |  | SEV |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| File No. | Contact rating | File No. | Rating | File No. | Contact rating |
| E120782* | $\begin{aligned} & \text { 6A 250V AC } \\ & \text { 6A 24V DC } \end{aligned}$ | $\begin{aligned} & \hline 968 \text { EZ 116.03/10 (SF2D) } \\ & 968 \text { EZ 116.02/09 (SF4D) } \end{aligned}$ | $\begin{aligned} & \text { 3A } 24 \mathrm{~V} \text { DC } \\ & 6 \mathrm{~A} 250 \mathrm{~V} \text { AC } \end{aligned}$ | 12.0520 | 6A 24V DC 6A 250V AC |

* CSA standard: Certified by C-UL


## SAFETY STRUCTURE OF SF RELAYS

This SF relay design ensures that subsequent operations shut down and can automatically return to a safe state when the SF relay suffers overloading and other circuit abnormalities
(unforeseen externally caused circuit or device breakdowns, end of life incidents, and noise, surge, and environmental influences) owing to contact welding, spring fusion or, in the worst-case
scenario, relay breakdown (coil rupture, faulty operation, faulty return, and fatigue and breakage of the operating spring and return spring), and even in the event of end of life.

1. Forced operation method
(2 Form A 2 Form B ,

4 Form A 4 Form B types) | Operation |
| :--- |
| 2. Independent operation method |
| (4 Form A 4 Form B type) |

## THE OPERATION OF SF RELAYS (when contacts are welded)

SF relays work to maintain a normal operating state even when the contact welding occur by overloading or short-circuit currents. It is easy to make weld detection circuits and safety circuits in the design to ensure safety even if contacts weld.

## 1) 2 Form A 2 Form B type

## Form "b" Contact Weld

If the form "b" contact (No. 1 and 3) welds, the armature becomes non-operational, the contact gaps at the three form "a" contacts are maintained at greater than 0.5 mm .020 inch. Reliable isolation is thus ensured.


Example: If the No. 1 contact welds
Each of the three form "a" contacts (No. 2 and 4) maintain a gap of greater than 0.5 mm .020 inch.

## Form "a" Contact Weld

When the form "a" contacts (No. 2 or 4) weld, the armature remains in a non-returned state and the contact gap at the two form "b" contact is maintained at greater than 0.5 mm .020 inch . Reliable isolation is thus ensured.



Non-energized (when No. 2 contact is welded)

Example: If the No. 2 contact welds.
The two form "b" contact (No. 1 or 3) maintains a gap of greater than 0.5 mm .020 inch.

Contact Operation Table


The table below shows the state of the other contacts when the current through the welded form " $a$ " contact is 0 V and the rated voltage is applied through the form "b" contact.

|  |  | State of other contacts |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 |  |
| Welded <br> terminal <br> No. | 1 |  | $>0.5$ |  | $>0.5$ |
|  | 2 | $>0.5$ |  | $>0.5$ |  |

$>0.5$ : contact gap is kept at min. 0.5 mm .020 inch Empty cells: either closed or open

* Contact gaps are shown at the initial state.

If the contacts change state owing to loading/breaking it is necessary to check the actual loading.

## 2) $\mathbf{4}$ Form A 4 Form B type

## Internal Contacts Weld

When internal contacts (No. 2, No. 3, No. 6 or No. 7) are welded, the armature becomes non-operational and the four form "a" contact gaps are maintained at 0.5 mm . 020 inch or greater. Reliable cut-off is thus ensured.


Example: If the No. 2 contact welds.
Each of the four form "a" contacts (No. 1, 3, 5, and 7) maintains a gap of greater than 0.5 mm .020 inch.

## External Contacts Weld

When external contacts (No. 1, No. 4, No. 5 or No. 8) are welded, gaps of 0.5 mm .020 inch and greater are maintained between adjacent contacts and other contacts operate normally by the coil being non-energized.


Example 2:
If external connections are made in series.
Even if one of the contacts welds, the other contacts operate independently and the contact gaps are maintained at greater than 0.5 mm .020 inch.


## Contact Operation Table



The table below shows the state of the other contacts when the current through the welded form "a" contact is 0 V and the rated voltage is applied through the form "b" contact.

| Contact No. <br> Contact No. |  | State of other contacts |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Welded terminal No. | 1 | - | >0.5 | >0.5 | \# | $>0.5$ | \# | $>0.5$ | \# |
|  | 2 | >0.5 | - | >0.5 |  | $>0.5$ |  | $>0.5$ |  |
|  | 3 |  | >0.5 | - | >0.5 |  | >0.5 |  | $>0.5$ |
|  | 4 | \# | >0.5 | >0.5 | - | \# | $>0.5$ | \# | $>0.5$ |
|  | 5 | $>0.5$ | \# | >0.5 | $\neq$ | , | >0.5 | $>0.5$ | \# |
|  | 6 | $>0.5$ |  | $>0.5$ |  | >0.5 | - | $>0.5$ |  |
|  | 7 |  | $>0.5$ |  | $>0.5$ |  | >0.5 | , | $>0.5$ |
|  | 8 | >0.5 | $>0.5$ | $\neq$ | $>0.5$ | \# | >0.5 | $>0.5$ |  |

$>0.5$ : contact gap is kept at $\min .0 .5 \mathrm{~mm} .020$ inch $\neq:$ contact closed Empty cells: either closed or open

* Contact gaps are shown at the initial state.

If the contacts change state owing to loading/breaking it is necessary to check the actual loading.

## NOTES

## 1. For cautions for use, please read "General Application Guidelines".

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 %-1393843-7 6-1415012-1 6-1419102-2 6-1423698-4 6-
1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616349-9 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1618107-9 6-1618248-4 CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7 7-1393767-8 7-1414968-8 7-
1419130-3 7-1608047-2
```

