

RoHS compliant
Protective construction: Flux-resistant type

FEATURES

1. Acquisition of Korean safety certification ("S" mark)
Excluding with diode type
2. Forcibly guided contact structure
3. Slim profile (mm inch)
$40 / 50(\mathrm{~L}) \times 13(\mathrm{~W}) \times 24(\mathrm{H})$
$1.575 / 1.969(\mathrm{~L}) \times .512(\mathrm{~W}) \times .945(\mathrm{H})$
4. Fast response time is achieved (8 ms or less).
5. With diode and LED indication type available
6. Sockets and terminal sockets (spade and ring tongue terminal compatible) are available.

TYPICAL APPLICATIONS

1. Machine tools
2. Robots
3. Safety PLCs
4. Circuits with stringent safety standard requirements such as those in motor vehicle production equipment.

ORDERING INFORMATION

Notes: 1. Please consult us about other coil voltages.
2. LED indication color is green.

TYPES

1. Standard type

Contact arrangement		Nominal coil voltage	Without LED indication	With LED indication	
		Part No.	Part No.		
4 poles	2 Form A 2 Form B		12 V DC	SFS2-DC12V	SFS2-L-DC12V
		24 V DC	SFS2-DC24V	SFS2-L-DC24V	
		48 V DC	SFS2-DC48V	SFS2-L-DC48V	
	3 Form A 1 Form B	12 V DC	SFS3-DC12V	SFS3-L-DC12V	
		24 V DC	SFS3-DC24V	SFS3-L-DC24V	
		48 V DC	SFS3-DC48V	SFS3-L-DC48V	
6 poles	4 Form A 2 Form B	12 V DC	SFS4-DC12V	SFS4-L-DC12V	
		24 V DC	SFS4-DC24V	SFS4-L-DC24V	
		48 V DC	SFS4-DC48V	SFS4-L-DC48V	
	5 Form A 1 Form B	12 V DC	SFS5-DC12V	SFS5-L-DC12V	
		24 V DC	SFS5-DC24V	SFS5-L-DC24V	
		48 V DC	SFS5-DC48V	SFS5-L-DC48V	
	3 Form A 3 Form B	12 V DC	SFS6-DC12V	SFS6-L-DC12V	
		24 V DC	SFS6-DC24V	SFS6-L-DC24V	
		48 V DC	SFS6-DC48V	SFS6-L-DC48V	

Standard packing: Carton: 50 pcs.; Case: 200 pcs.

* Sockets and terminal sockets available.

2. With diode and LED indication type

Contact arrangement		Nominal coil voltage	Part No.
4 poles	2 Form A 2 Form B	12 V DC	SFS2-L-DC12V-D
		24 V DC	SFS2-L-DC24V-D
		48 V DC	SFS2-L-DC48V-D
	3 Form A 1 Form B	12 V DC	SFS3-L-DC12V-D
		24 V DC	SFS3-L-DC24V-D
		48 V DC	SFS3-L-DC48V-D
6 poles	4 Form A 2 Form B	12 V DC	SFS4-L-DC12V-D
		24 V DC	SFS4-L-DC24V-D
		48 V DC	SFS4-L-DC48V-D
	5 Form A 1 Form B	12 V DC	SFS5-L-DC12V-D
		24 V DC	SFS5-L-DC24V-D
		48 V DC	SFS5-L-DC48V-D
	3 Form A 3 Form B	12 V DC	SFS6-L-DC12V-D
		24 V DC	SFS6-L-DC24V-D
		48 V DC	SFS6-L-DC48V-D

Standard packing: Carton: 50 pcs.; Case: 200 pcs.

* Sockets and terminal sockets available.

RATING

1. Coil data

Contact arrangement		Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4 poles	2 Form A 2 Form B	12 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	30 mA	400Ω	Approx. 360 mW	$110 \% \mathrm{~V}$ of nominal voltage
		24V DC			15 mA	1,600		
		48 V DC			7.5 mA	6,400 ${ }^{\text {d }}$		
	3 Form A 1 Form B	12 V DC			30 mA	400Ω		
		24 V DC			15 mA	1,600		
		48 V DC			7.5 mA	6,400 Ω		
6 poles	4 Form A 2 Form B	12 V DC			41.7 mA	288Ω	Approx. 500 mW	
		24V DC			20.8 mA	1,152 Ω		
		48V DC			10.4 mA	4,608		
	5 Form A 1 Form B	12 V DC			41.7 mA	288Ω		
		24 V DC			20.8 mA	1,152 Ω		
		48 V DC			10.4 mA	4,608		
	3 Form A 3 Form B	12 V DC			41.7 mA	288Ω		
		24 V DC			20.8 mA	1,152 2		
		48 V DC			10.4 mA	4,608		

[^0]
2. Specifications (relay)

Characteristics	Item		Specifications			
			4 poles	6 poles		
Contact	Contact arrangement		2 Form A 2 Form B 3 Form A 1 Form B	4 Form A 2 Form B	5 Form A 1 Form B	3 Form A 3 Form B
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)			
	Contact material		Au flashed AgSnO_{2} type			
	Nominal switching capacity (resistive load)		6A 250V AC, 6A 30V DC			
	Max. switching power (resistive load)		1,500VA, 180W			
	Max. switching voltage		250V AC, 125V DC			
	Max. switching current		6 A (Reduce by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$ for temperatures 70 to $85^{\circ} \mathrm{C} 158$ to $185^{\circ} \mathrm{F}$)			
	Min. switching capacity (Reference value) ${ }^{*}$		$1 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$			
	Nominal operating power		Approx. 360 mW	Approx. 500mW		
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.			
	Breakdown voltage (Initial)	Between open contacts	1,500 Vrms for 1 min . (Detection current: 10 mA)			
		Between contact sets	2,500 Vrms for 1 min . (Detection current: 10 mA); 7-8/9-10 between open contacts	2,500 Vrms for 1 min . (Detection current: 10 mA); 7-8/11-12 between open contacts 9-10/13-14 between open contacts 11-12/13-14 between open contacts		
			4,000 Vrms for 1 min . (Detection current: 10 mA); 3-4/5-6 between open contacts 3-4/7-8 between open contacts 5-6/9-10 between open contacts	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA); $3-4 / 5-6$ between open contacts 3-4/7-8 between open contacts 5-6/9-10 between open contacts 7-8/9-10 between open contacts		
		Between contact and coil	4,000 Vrms for 1min (Detection current: 1	OmA)		
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20ms (Nominal coil voltage applied to the coil, excluding contact bounce time)			
	Response time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{* 2}$		Max. 8ms (Nominal coil voltage applied to the coil, excluding contact bounce time and without diode)*4			
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20ms (Nominal coil voltage applied to the coil, excluding contact bounce time)			
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)			
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms)			
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$)			
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm			
Expected life	Mechanical		Min. 10^{7} (at 180 times/min.)			
	Electrical		250 V AC 6 A resistive load: Min. 10^{5} (at 20 times/min.)			
			30 V DC 6 A resistive load: Min. 10^{5} (at 20 times/min.)			
			250 V AC 1 A resistive load: Min. 5×10^{5} (at 30 times/min.)			
			30 V DC 1 A resistive load: Min. 5×10^{5} (at 30 times/min.)			
			[AC 15] 240 V AC 2 A inductive load: Min. 10^{5} (at 20 times $/ \mathrm{min} ., \cos \varphi=0.3$)			
			[DC 13] 24 V DC 1 A inductive load: Min. 10^{5} (at 20 times/min., L/R $=48 \mathrm{~ms}$)			
Conditions	Conditions for operation, transport and storage $^{\star 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)			
	Max. operating speed		20 times/min. (at max. rating)			
Unit weight			Approx. 20 g .71 oz	Approx. 23 g .81 oz		

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Response time is the time after the coil voltage turns off until the time when "a" contact turns off.
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.
*4. Response time of built-in diode type is 12 ms or less (excluding contact bounce time when nominal coil voltage is applied to the coil).

REFERENCE DATA

1. Operate/response/release time

Tested sample: SFS4-DC24V (4 Form A 2 Form B), 20pcs. (a contacts: 80, b contacts: 40)

2. Coil temperature rise

Tested sample: SFS4-DC24V (4 Form A 2 Form B) $3 p c s$.
Measured portion: Inside the coil
Ambient temperature: Room temperature
($27^{\circ} \mathrm{C} 80.6^{\circ} \mathrm{F}$), $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

3. Malfunctional shock

Tested sample: SFS4-DC24V (4 Form A 2 Form B), $3 p c s$.

4. Max, switching capacity

Other contact gaps when contacts are welded

Sample: SFS4-DC24V (4 Form A 2 Form B)
The table below shows the state of the other contacts.
In case of form "NO" contact weld the coil applied voltage is 0 V .
In case of form "NC" contact weld the coil applied voltage is nominal.

		State of other contacts					
		3-4 (NC)	5-6 (NC)	7-8 (NO)	9-10 (NO)	11-12 (NO)	13-14 (NO)
Welded contact No.	3-4 (NC)	-		>0.5	>0.5	>0.5	>0.5
	5-6 (NC)		-	>0.5	>0.5	>0.5	>0.5
	7-8 (NO)	>0.5	>0.5	-			
	9-10 (NO)	>0.5	>0.5				
	11-12 (NO)	>0.5	>0.5			-	
	13-14 (NO)	>0.5	>0.5				,

>0.5 : contact gap is kept at min .0 .5 mm . 020 inch
Empty cells: either ON or OFF
Note: Contact gaps are shown at the initial state.
If the contact transfer is caused by load switching, it is necessary to check the actual loading.

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/

1. 4 poles (2 Form A 2 Form B, 3 Form A 1 Form B)

CAD Data

External dimensions

PC board pattern (Bottom view)

Schematic (Bottom view)

Standard

With LED indication

(2 Form A 2 Form B)

(2 Form A 2 Form B)

(3 Form A 1 Form B)

(3 Form A 1 Form B)

2. 6 poles (4 Form A 2 Form B, 5 Form A 1 Form B, 3 Form A 3 Form B)

CAD Data

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)

Standard

(4 Form A 2 Form B)

With LED indication

(4 Form A 2 Form B)

(4 Form A 2 Form B)

(5 Form A 1 Form B)

(5 Form A 1 Form B)

(5 Form A 1 Form B)

(3 Form A 3 Form B)

(3 Form A 3 Form B)

SAFETY STANDARDS

Certification authority	File No.	
UL/C-UL	E43149*	$6 \mathrm{~A} 277 \mathrm{~V} \mathrm{AC}, 6 \mathrm{~A} 30 \mathrm{~V}$ DC
TÜV	B 1104 13461 291	$6 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}(\cos \phi=1.0), 6 \mathrm{~A} 30 \mathrm{~V}$ DC (0 ms), AC15: 2A 240V AC $(\cos \phi=0.3)$, DC13: 1A 24V DC (L/R 48ms)

[^1]
NOTES

1. For cautions for use, please read "GENERAL
 APPLICATION GUIDELINES".

2. Coil operating power

Pure DC current should be applied to the coil. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different.
The wave form should be rectangular.

3. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

4. Cleaning

This relay is not sealed, therefore, immersion may cause failure. Be careful that flux does not overflow onto the PC board or penetrate inside the relay.

5. Soldering

When using automatic soldering, the following conditions are recommended

1) Preheating: $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$, within 120 Sec (PC board solder surface)
2) Soldering: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$, within 6 Sec
6. Other
1) If the relay has been dropped, the appearance and characteristics should always be checked before use.
2) The switching lifetime is defined under the standard test condition specified in the JIS* C 5442-1996 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the actual product as it is affected by the coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful with loads such as those listed below.
(1) When used for AC load-operation and the operating phase is synchronous. Rocking and fusing can easily occur due to contact shifting.
(2) During high frequency on/off operation with certain loads, arcing may occur at the contacts. This can cause fusion to Oxygen and Nitrogen gas in the air creating Nitric Acid $\left(\mathrm{HNO}_{3}\right)$ which can cause corrosion to the contacts.
Please see the following countermeasure examples:
1. Incorporate an arc-extinguishing circuit.
2. Lower the operating frequency
3. Lower the ambient humidity
3) For secure operations, nominal coil voltage should be applied. In addition, please note that pick-up and drop-out voltage will vary according to the ambient temperature and operating conditions.
4) Heat, smoke, and/or fire may occur if the relay is used outside the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. Also, make sure that the relay is wired correctly.
5) Incorrect wiring may cause false operation or generate heat or flames.
6) Check the ambient conditions when storing or transporting the relays and devices containing the relays. Freezing or condensation may occur in the relay causing damage. Avoid exposing the relays to heavy loads, or strong shock and vibration.

7. Usage, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature: -40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
(When the temperature is 70 to $85^{\circ} \mathrm{C} 158$ to $185^{\circ} \mathrm{F}$, reduce the 6 A max. switching current by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.)
(2) Humidity: 5 to 85% RH (Avoid freezing and condensation.)

The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa

Temperature and humidity range for usage, transport, and storage

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature and low humidity

At low temperature, low humidity environments, the plastic becomes brittle.
Please note corrections.
8. Please connect DC coil types with LED and built-in diode correctly by verifying the coil polarity ("+" and "-"). Connecting with reverse polarity will cause the LED not to light and damage the built-in diode due to its specification.

ACCESSORIES

TYPES

1. Sockets

Type	No. of poles	Part No.
PC board sockets	4 poles	SFS4-PS
	6 poles	SFS6-PS

Standard packing: Carton: 10 pcs.; Case: 100 pcs.
2. DIN rail terminal socket

NeWType Terminal sockets	No. of poles	Part No.
	4 poles	SFS4-SFD-R
	6 poles	SFS6-SFD-R

Standard packing: Carton: 10 pcs.; Case: 100 pcs.
Note: For previous products (spade tongue terminal dedicated terminal sockets), please order SFS4-SFD for 4 poles and SFS6-SFD for 6 poles.

RATING

Specifications

Item	
Breakdown voltage (Initial)	B
Insulation resistance (Initial)	M
Max. carrying current	$6 A$

Specifications
Between each terminal: 2,500 Vrms for 1 min . (Detection current: 10 mA)
Min. 1,000M (at 500 V DC) Measurement at same location as "Breakdown voltage" section.
6 A (Reduce by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$ for temperatures 70 to $85^{\circ} \mathrm{C} 158$ to $185^{\circ} \mathrm{F}$)
The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/
External dimensions
TC board pattern (Bottom view)

1. PC board sockets (4 poles)
(SFS4-PS)

Schematic (Bottom view)

Standard

With LED indication

With diode and LED indication type
(When 2 Form A 2 Form B mounted)
(When 2 Form A 2 Form B mounted)

(When 2 Form A 2 Form B mounted)

Tolerance: $\pm 0.1 \pm .004$

General tolerance: $\pm 0.3 \pm .012$

(When 3 Form A 1 Form B mounted)

(When 3 Form A 1 Form B mounted)

(When 3 Form A 1 Form B mounted)

2. PC board sockets (6 poles)

(SFS6-PS)
CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)

Standard

With LED indication

With diode and LED indication type

(When 4 Form A 2 Form B mounted)

(When 4 Form A 2 Form B mounted)

(When 4 Form A 2 Form B mounted)

(When 5 Form A 1 Form B mounted)

(When 5 Form A 1 Form B mounted)

(When 5 Form A 1 Form B mounted)

(When 3 Form A 3 Form B mounted)

(When 3 Form A 3 Form B mounted)

(When 3 Form A 3 Form B mounted)
3. Terminal socket for spade and ring tongue terminals (For 4 poles finger protect type)

CAD Data

External dimensions

Tolerance: $\pm 0.1 \pm .004$
Schematic (Top view)

Note: Ring tongue terminals cannot be used with conventional DIN rail terminal socket (SFS4-SFD).
In use of a ring tongue terminals, please use SFS4-SFD-R.

4. Terminal socket for spade and ring tongue terminals (For 6 poles finger protect type)

Mounting hole dimensions

Tolerance: $\pm 0.1 \pm .004$

Schematic (Top view)

* Reference value (when using DIN rail ATA48011)

Note: Ring tongue terminals cannot be used with conventional DIN rail terminal socket (SFS6-SFD). In use of a ring tongue terminals, please use SFS6-SFD-R.

NOTES

Installation

1) Attach directly to the chassis or use a DIN rail.
(1) When attaching directly to chassis

- Use a M3.5 screw, spring washer, and hex nut.
- For the mounting pitch, refer to the dimensions.
(2) When installing on a DIN rail
- Use a 35 mm 1.378 inch wide DIN rail (DIN46277).
- Install and remove as shown in the figures below.

<When removing>

2) Refer to the figure below for applicable wire-pressed terminals.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

[^0]: Note: The nominal operating current will increase by approximately 2 mA due to the LED on the LED indication type.

[^1]: * CSA standard: Certified by C-UL

