TUV

Panasonic ideas for life

RoHS compliant

2c 15A, 4c 10A polarized power relays

Taking advantage of the 4-gap balanced armature mechanism, S relays have met a number of relay needs and earned a reputation for the characteristics that they provide. Building on the same structure, the SP relay was introduced as a highsensitivity power relay to provide nominal operating power of 300 mW and minimum operating power of 150 mW (single side stable and 2 coil latching types). Even so, with the nominal switching capacity for the 2 Form C at 15 A , and for the 4 Form C at 10 A , highcapacity switching is possible with small input. Moreover, taking full advantage of the excellence of the 4-gap balanced armature mechanism, we have realized a small, slim form factor that also has superior resistance to vibration and shock. This power relay is often chosen for NC machines and electrical power remote monitoring control panels, and for power supplies used in computers and other equipment. The SP also often provides power control for high-end business and industrial equipment.

FEATURES

1. Small, slim form factor

Facilitating the form factor reduction of devices, the overall height of the relay package is less than half that of our HP relay.
2. High sensitivity

The high-efficiency polarized electromagnetic mechanism in conjunction with our exclusive spring alignment method achieves levels of sensitivity higher than relays that have been available up to now. For both the 2 Form C and 4 Form C single side stable and 2 coil latching types, the 150 mW minimum operating power level allows direct driving by transistor or chip controllers.
3. High reliability and long life With a structure that ensures almost perfectly complete twin contact and minimal contact bounce, you get greater reliability than has so far been provided by power relays.
4. Latching types also available 1 coil latching and 2 coil latching types are available. In cases where it was formerly unavoidable to use plural relays for large power memory, you can now use a single SP relay.
5. Strong resistance to vibration and shock
Our balanced armature technology well withstands vibration and shocks. It provides strong resistance to vibration and shock.
6. Terminals and mounting boards are available.

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
4: 4 Form C
Terminal shape
Nil: Plug-in type
P: PC board type
Operating function
Nil: Single side stable
L : 1 coil latching
L2: 2 coil latching
Nominal coil voltage
DC 3, 5, 6, 12, 24, 48 V
Notes: 1. PC board type and 1 coil latching type are manufactured by lot upon receipt of order.
2. Certified by UL, CSA and TÜV

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
2 Form C	3 V DC	SP2-DC3V	SP2-L2-DC3V
	5V DC	SP2-DC5V	SP2-L2-DC5V
	6V DC	SP2-DC6V	SP2-L2-DC6V
	12 V DC	SP2-DC12V	SP2-L2-DC12V
	24V DC	SP2-DC24V	SP2-L2-DC24V
	48 V DC	SP2-DC48V	SP2-L2-DC48V
4 Form C	3V DC	SP4-DC3V	SP4-L2-DC3V
	5V DC	SP4-DC5V	SP4-L2-DC5V
	6V DC	SP4-DC6V	SP4-L2-DC6V
	12 V DC	SP4-DC12V	SP4-L2-DC12V
	24V DC	SP4-DC24V	SP4-L2-DC24V
	48V DC	SP4-DC48V	SP4-L2-DC48V

Standard packing (2 Form C): Carton: 20 pcs.; Case: 200 pcs.
Standard packing (4 Form C): Carton: 10 pcs.; Case: 100 pcs.
Note: PC board type and 1 coil latching type are manufactured by lot upon receipt of order.

* For terminal sockets and mounting boards sockets, see page 152 and 153.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	100 mA	30Ω	300 mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			60.2 mA	83Ω		
6V DC			50 mA	120Ω		
12 V DC			25 mA	480Ω		
24V DC			12.5 mA	1,920		
48 V DC			6.2 mA	7,700 Ω		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. applied voltage
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	100 mA	100 mA	30Ω	30Ω	300 mW	300mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			60.2 mA	60.2 mA	83Ω	83Ω			
6V DC			50 mA	50 mA	120Ω	120Ω			
12V DC			25 mA	25 mA	480Ω	480Ω			
24V DC			12.5 mA	12.5 mA	1,920	1,920			
48V DC			6.2 mA	6.2 mA	7,680	7,680			

2. Specifications

Characteristics	Item		Specifications
Contact	Initial contact pressure		2 Form C: Approx. $0.392 \mathrm{~N}(40 \mathrm{~g} 1.41 \mathrm{oz})$, 4 Form C: Approx. $0.196 \mathrm{~N}(20 \mathrm{~g} 0.71 \mathrm{oz})$
	Arrangement		2 Form C, 4 Form C
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: Au flashed AgSnO_{2} type, Movable contact: AgSnO_{2} type
Rating	Nominal switching capacity (resistive load)		2 Form C: 15 A 250 V AC, 4 Form C: 10 A 250 V AC
	Max. switching power (resistive load)		2 Form C: $3,750 \mathrm{VA}, 300 \mathrm{~W}, 4$ Form C: 2,500 VA, 300 W
	Max. switching voltage		2 Form C, 4 Form C: 250 V AC, 30 V DC (48V DC: Max. 2A)
	Max. switching current		2 Form C: 15 A (AC) 10 A (DC), 4 Form C: 10 A
	Minimum operating power		150 mW (Single side stable, 2 coil latching)
	Nominal operating power		300 mW (Single side stable, 2 coil latching)
	Min. switching capacity (Reference value)*1		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial) ($25^{\circ} \mathrm{C}, 50 \%$ relative humidity)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact and coil	3,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	3,000 Vrms for 1 min . (Detection current: 10 mA)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 30 ms [Max. 30 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms [Max. 30 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
	Temperature rise (coil) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $40^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; nominal switching capacity.)
Mechanical characteristics	Shock resistance	Functional	Min. $392 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 times/min.)
	Electrical (resistive load)		```2 Form C: Min.105 (15 A 250 V AC [at 20 times/min.]), Min.105 (10 A 30 V DC [at 20 times/min.]) 4 Form C: Min. 105 (15 A 250 V AC [at 20 times/min.]), Min. 105 (10 A 30 V DC [at 20 times/min.])```
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		20 times/min. (at rated load)
Unit weight			2 Form C: 50 g 1.76 oz; 4 Form C: 65 g 2.29 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

Operate and release time (Single side stable) SP2

Coil temperature rise
Tested sample: SP2-DC24V
Ambient temperature: 20 to $22^{\circ} \mathrm{C} 68$ to $72^{\circ} \mathrm{F}$

Tested sample: SP4-DC24V
Ambient temperature: 27 to $29^{\circ} \mathrm{C} 81$ to $84^{\circ} \mathrm{F}$

Electrical life
(SP2, 15 A 250 V AC resistive load)

Electrical life
(SP4, 10 A 250 V AC resistive load)

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/

2 Form C
Plug-in terminal

CAD Data
 External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board type
CAD Data External dimensions

General tolerance: $\pm 0.3 \pm .012$
PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view) Single side stable

(Deenergized condition)
2 coil latching

(Reset condition)

Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

4 Form C

Plug-in terminal

CAD Data
External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board type

CAD Data External dimensions

PC board pattern (Bottom view)
$16-2.5 \mathrm{dia}$.

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view) Single side stable

(Deenergized condition)
2 coil latching

Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

SAFETY STANDARDS

Item	UL/C-UL (Recognized)		CSA (Certified)		TÜV (Certified)	
	File No.	Contact rating	File No.	Contact rating	File No.	Rating
2 Form C	E43028	15A 250V AC $1 / 2 \mathrm{HP} 125,250 \mathrm{~V}$ AC 10A 30V DC	LR26550 etc.	$\begin{aligned} & \text { 15A 250V AC } \\ & 1 / 2 \mathrm{HP} 125,250 \mathrm{~V} \mathrm{AC} \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B } 0303 \\ 13461010 \end{array}$	$\begin{aligned} & \text { 15A 250V AC }(\cos \phi=1.0) \\ & \text { 10A } 30 \mathrm{~V} \text { DC } \end{aligned}$
4 Form C	E43028	$\begin{aligned} & \text { 10A 250V AC } \\ & 1 / 3 \mathrm{HP} 125,250 \mathrm{~V} \text { AC } \end{aligned}$ $10 \mathrm{~A} 30 \mathrm{~V} D \mathrm{C}$	LR26550 etc.	$\begin{aligned} & \hline 10 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC} \\ & 1 / 3 \mathrm{HP} 125,250 \mathrm{~V} \mathrm{AC} \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B } 0303 \\ & 13461010 \end{aligned}$	$\begin{aligned} & \text { 10A } 250 \mathrm{~V} \text { AC }(\cos \phi=1.0) \\ & \text { 10A } 30 \mathrm{~V} \text { DC } \end{aligned}$

For Cautions for Use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Panasonic manufacturer:
Other Similar products are found below :
ECE-A1HKAR47 ELK-EA102FA ELC-09D151F EEC-S0HD224H ELL-5PS3R3N HC2-H-DC48V-F HL2-HP-AC120V-F HL2-HP-DC12V-F HL2-HP-DC6V-F HL2-HP-DC24V-F HC4-H-DC24V HL2-HTM-DC24V-F HL2-HTM-AC24V-F HC3-HL-AC120V-F HC4-HAC120V AMV9003 EEC-RG0V155H AZH2031 RP-SDMF64DA1 RP-SDMF32DA1 EEF-UD0K101R RP-SMLE08DA1 EVMF6SA00B55 ELC-12D101E ERA-3YEB272V EEC-RF0V684 ERA-3YEB153V ELC-3FN2R2N ERA-3YEB512V ERJ-1GEJ564C ERZV20R391 ELL-6RH221M ETQ-P3W3R3WFN ELL-ATV681M ELL-VGG4R7N EEF-UD0J101R ECQ-U2A474ML LC-R121R3P ELKEA100FA EVP-AKB11A ECQ-U2A154ML ELK-E101FA ERA-3YEB303V ERA-V15J100V ERZ-V05V680CB EEF-UE0K101R EECS0HD224V EVQ-PAC05R EVQ-PAG04M ELK-EA222FA

