2c 15A, 4c 10A polarized power relays

RoHS compliant

Protective construction: Dust cover type

Taking advantage of the 4-gap balanced armature mechanism, S relays have met a number of relay needs and earned a reputation for the characteristics that they provide. Building on the same structure, the SP relay was introduced as a highsensitivity power relay to provide nominal operating power of 300 mW and minimum operating power of 150 mW (single side stable and 2 coil latching types). Even so, with the nominal switching capacity for the 2 Form C at 15 A , and for the 4 Form C at 10 A , highcapacity switching is possible with small input. Moreover, taking full advantage of the excellence of the 4-gap balanced armature mechanism, we have realized a small, slim form factor that also has superior resistance to vibration and shock. This power relay is often chosen for NC machines and electrical power remote monitoring control panels, and for power supplies used in computers and other equipment. The SP also often provides power control for high-end business and industrial equipment.

FEATURES

1. Small, slim form factor

Facilitating the form factor reduction of devices, the overall height of the relay package is less than half that of our HP relay.
2. High sensitivity

The high-efficiency polarized electromagnetic mechanism in conjunction with our exclusive spring alignment method achieves levels of sensitivity higher than relays that have been available up to now. For both the 2 Form C and 4 Form C single side stable and 2 coil latching types, the 150 mW minimum operating power level allows direct driving by transistor or chip controllers.
3. High reliability and long life

With a structure that ensures almost perfectly complete twin contact and minimal contact bounce, you get greater reliability than has so far been provided by power relays.
4. Latching types also available

1 coil latching and 2 coil latching types are available. In cases where it was formerly unavoidable to use plural relays for large power memory, you can now use a single SP relay.
5. Strong resistance to vibration and shock
Our balanced armature technology well withstands vibration and shocks. It provides strong resistance to vibration and shock.
6. Terminals and mounting boards are available

ORDERING INFORMATION

Contact arrangement 2: 2 Form C 4: 4 Form C
P: PC board type
Operating function
Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
Nominal coil voltage $3,5,6,12,24,48 \mathrm{~V}$ DC

Notes: 1. PC board type and 1 coil latching type are manufactured by lot upon receipt of order.
2. Certified by UL, CSA and TÜV

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
2 Form C	3V DC	SP2-DC3V	SP2-L2-DC3V
	5V DC	SP2-DC5V	SP2-L2-DC5V
	6V DC	SP2-DC6V	SP2-L2-DC6V
	12 V DC	SP2-DC12V	SP2-L2-DC12V
	24V DC	SP2-DC24V	SP2-L2-DC24V
	48V DC	SP2-DC48V	SP2-L2-DC48V
4 Form C	3V DC	SP4-DC3V	SP4-L2-DC3V
	5V DC	SP4-DC5V	SP4-L2-DC5V
	6 V DC	SP4-DC6V	SP4-L2-DC6V
	12 V DC	SP4-DC12V	SP4-L2-DC12V
	24 V DC	SP4-DC24V	SP4-L2-DC24V
	48 V DC	SP4-DC48V	SP4-L2-DC48V

Standard packing (2 Form C): Carton: 20 pcs.; Case: 200 pcs.
Standard packing (4 Form C): Carton: 10 pcs.; Case: 100 pcs.
Note: PC board type and 1 coil latching type are manufactured by lot upon receipt of order.

* Terminal sockets and mounting boards available.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	100 mA	30Ω	300 mW	$150 \% \mathrm{~V}$ of nominal voltage
5 V DC			60.2 mA	83Ω		
6V DC			50 mA	120Ω		
12V DC			25 mA	480Ω		
24V DC			12.5 mA	1,920 2		
48V DC			6.2 mA	7,700		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Nominal operating power		Max. applied voltage
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	100 mA	100 mA	30Ω	30Ω	300 mW	300 mW	$150 \% \mathrm{~V}$ of nominal voltage
5 V DC			60.2 mA	60.2 mA	83Ω	83Ω			
6V DC			50 mA	50 mA	120Ω	120Ω			
12 V DC			25 mA	25 mA	480Ω	480Ω			
24V DC			12.5 mA	12.5 mA	1,920	1,920			
48 V DC			6.2 mA	6.2 mA	7,680 2	7,680 ${ }^{\text {, }}$			

2. Specifications

Characteristics	Item		Specifications
Contact	Initial contact pressure		2 Form C: Approx. $0.392 \mathrm{~N}(40 \mathrm{~g} 1.41 \mathrm{oz})$, 4 Form C: Approx. $0.196 \mathrm{~N}(20 \mathrm{~g} 0.71 \mathrm{oz})$
	Arrangement		2 Form C, 4 Form C
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: Au flashed AgSnO_{2} type, Movable contact: AgSnO2 type
Rating	Nominal switching capacity (resistive load)		2 Form C: 15 A 250 V AC, 4 Form C: 10 A 250 V AC
	Max. switching power (resistive load)		2 Form C: $3,750 \mathrm{VA}, 300 \mathrm{~W}, 4$ Form C: $2,500 \mathrm{VA}, 300 \mathrm{~W}$
	Max. switching voltage		2 Form C, 4 Form C: 250 V AC, 30 V DC (48V DC: Max. 2A)
	Max. switching current		2 Form C: 15 A (AC) 10 A (DC), 4 Form C: 10 A
	Nominal operating power		300 mW (Single side stable, 2 coil latching)
	Min. switching capacity (reference value)**		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial) $\left(25^{\circ} \mathrm{C}, 50 \%\right.$ relative humidity)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact and coil	3,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	3,000 Vrms for 1 min . (Detection current: 10 mA)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 30 ms [Max. 30 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms [Max. 30 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
	Temperature rise (coil) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $40^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; nominal switching capacity.)
Mechanical characteristics	Shock resistance	Functional	Min. $392 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 times/min.)
	Electrical (resistive load)		2 Form C: Min. 10^{5} (15 A 250 V AC [at 20 times/min.]), Min. 10^{5} (10 A 30 V DC [at 20 times/min.]) 4 Form C: Min. 10^{5} (15 A 250 V AC [at 20 times/min.]), Min. 10^{5} (10 A 30 V DC [at 20 times $/ \mathrm{min}$.])
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		20 times/min. (at rated load)
Unit weight			2 Form C: 50 g 1.76 oz; 4 Form C: 65 g 2.29 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

1.-(1) Coil temperature rise (2 Form C type) Tested sample: SP2-DC24V

1.-(2) Coil temperature rise (4 Form C type) Tested sample: SP4-DC24V Ambient temperature: 27 to $29^{\circ} \mathrm{C} 81$ to $84^{\circ} \mathrm{F}$

2. Electrical life (SP2, 15 A 250 V AC resistive load)

Change of pick-up and drop-out voltage Change of contact resistance

3. Electrical life (SP4, 10 A 250 V AC resistive load)

Change of pick-up and drop-out voltage
Change of contact resistance

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/
2 Form C

1) Plug-in terminal

CAD Data External dimensions

General tolerance: $\pm 0.3 \pm .012$

2) PC board type

CAD Data External dimensions

General tolerance: $\pm 0.3 \pm .012$
PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view) Single side stable type

(Deenergized condition)
2 coil latching type

(Reset condition)

[^0]
4 Form C

1) Plug-in terminal

CAD Data External dimensions

General tolerance: $\pm 0.3 \pm .012$

2) PC board type

CAD Data External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
Single side stable type

(Deenergized condition)
2 coil latching type

Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

SAFETY STANDARDS

Item	UL (Recognized)		CSA (Certified)		TÜV (Certified)	
	File No.	Contact rating	File No.	Contact rating	File No.	Rating
2 Form C	E43028	15A 250V AC 1/2HP 125, 250V AC 10A 30V DC	LR26550	$\begin{aligned} & \text { 15A 250V AC } \\ & 1 / 2 \mathrm{HP} 125,250 \mathrm{~V} \text { AC } \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & \text { B } 1108 \\ & 13461308 \end{aligned}$	$\begin{aligned} & \text { 15A } 250 \mathrm{~V} \text { AC }(\cos \phi=1.0) \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$
4 Form C	E43028	10A 250V AC 1/3HP 125, 250V AC 10A 30V DC	LR26550	10A 250V AC 1/3HP 125, 250V AC 10A 30V DC	$\begin{aligned} & \text { B } 1108 \\ & 13461308 \end{aligned}$	$\begin{aligned} & \text { 10A } 250 \mathrm{~V} \text { AC }(\cos \phi=1.0) \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$

NOTES

1. For cautions for use, please read
"GENERAL APPLICATION
GUIDELINES" on page B-1.

ACCESSORIES

SP RELAYS TERMINAL SOCKETS

TYPES

Product name	Part No.
SP2 Terminal socket	SP2-SF
SP4 Terminal socket	SP4-SF

DIMENSIONS (mm inch)

The CAD data of the products with a
CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/

SP2 Terminal socket

CAD Data
 CAD Data

SP4 Terminal socket

CAD Data

Note: Terminal number marking is on the socket body. Please refer together with the SP relay schematic.

Mounting hole diagram

Notes:
(1) Mounting screws and the fastening bracket are included in the package.
(2) Mount the relay with the proper mounting direction - i.e. with the direction of the Mark on top of the relay case matching the direction of the (U mark on the terminal block. (The 仓 direction of the terminal block is the upward direction of the relay.)

Fastening bracket mounting and removal

1. Mounting

Insert the A part of the fastening bracket into the mounting groove of the terminal block, and then fit the B part into groove, while pressing with the tip of a minus screwdriver.

2. Removal

Slide the B part of the fastening bracket from the groove in the terminal block, while pressing with the tip of a minus screwdriver. While the bracket is in this position, keep pressing the C part of the bracket to the relay side with your finger, and lift up to the left side and remove from the groove, as in the diagram at right.

TYPES

Direct chassis mounting possible, and applicable to DIN rail.

Product name	Part No.
Mounting board	SP-MA

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/ CAD Data

Mounting hole diagram

Tolerance: $\pm 0.1 \pm .004$

Use method

1. Both the SP relay 2 Form C and 4 Form C can be mounted to the mounting slats.
2. Use the mounting slats either by attaching them directly to the chassis, or by mounting with a DIN rail.
1) When attaching directly to chassis

- Use two M3 screws.
- For the mounting pitch, refer to the specification diagram.

2) When mounting on a DIN rail

- Use a 35mm 1.378inch wide DIN rail (DIN46277).
- The mounting method should be as indicated in the diagram at right.

Method for mounting on DIN rail

Fig. 1

Fig. 2

Fit into mounting
grooves.
Fig. 3

(1) First fit the arc shaped claw of the mounting slat into the DIN rail.
(2) Press on the side as shown in the diagram below.
(3) Fit in the claw part on the opposite side.

Precautions for use

When mounting to a DIN rail, use a commercially available fastening bracket if there is a need to stop sliding of the mounting slat in the rail direction.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Relay Sockets \& Fixings category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
$00008258500 \underline{00111976502} \underline{0000-825-81-00} \underline{60 S Y 4 S 05} \underline{M 41 G} \underline{670-0125} \underline{670-0127} \underline{6700152} \underline{670-0153} \underline{6700156} \underline{\text { D258-2TS00 70-309 7- }}$ 1393143-3 7-1616360-5 8000-DG2-5 911361 9-1616339-5 PJF11N GDA12HA GDA12HD GDA12SA GDA12SD GDA16HD GDA22HA GDA95A GDA95D GFX20 PT08QN PT 1/8 D=3.2 GUA1 GUA2-11 GUA4-04 GUA4-31 GUM5R GUR-120 GUR-24 GUR-240 GUR-277 GURX-277 GUW12 GUW95 GUZ63L R99-11 FOR MY(NAMEPLATE) D52PR2T RES100K 1310H-HDC 1390H-1ST 1393824-3 $1390 \mathrm{H}-2 \mathrm{PC}$ 1410-2SM

[^0]: Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

