Panasonic ideas for life

RoHS compliant

FEATURES

1. Small size, controlled 7.5A inrush current possible
2. $2,000 \mathrm{~V}$ breakdown voltage between contact and coil
The body block construction of the coil that is sealed at formation offers a high breakdown voltage of $2,000 \mathrm{~V}$ between contact and coil, and 1,000 V between open contacts.

Small size, controlled 7.5A inrush current possible
3. Outstanding surge resistance.

Surge breakdown voltage between open contacts:
$1,500 \mathrm{~V} 10 \times 160 \mu \mathrm{sec}$. (FCC part 68)
Surge breakdown voltage between contact and coil:
$2,500 \mathrm{~V} 2 \times 10 \mu \mathrm{sec}$. (Bellcore)
4. Nominal operating power: High sensitivity of 140 mW
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.
5. High contact capacity: 2 A 30 V DC
6. Compact size
$15.0(\mathrm{~L}) \times 7.4(\mathrm{~W}) \times 8.2(\mathrm{H}) .591(\mathrm{~L}) \times$
$.291(\mathrm{~W}) \times .323(\mathrm{H})$
7. Outstanding vibration and shock resistance.
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$ Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance: 10 to 55 Hz (at double amplitude of 3.3 mm . 130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.
9. A range of surface-mount types is also available
SA: Low-profile surface-mount terminal type
SS: Space saving surface-mount terminal type

TYPICAL APPLICATIONS

1. Air-conditioning control (solenoid load)
2. Others, High-capacity control etc.

ORDERING INFORMATION

Notes: 1 . *48 V coil type: Single side stable only
2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

TYPES

1. Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
		Part No.	Part No.	Part No.	Part No.
2 Form C	1.5 V DC	TX2-1.5V-TH	TX2-L-1.5V-TH	TX2-L2-1.5V-TH	TX2-LT-1.5V-TH
	3V DC	TX2-3V-TH	TX2-L-3V-TH	TX2-L2-3V-TH	TX2-LT-3V-TH
	4.5 V DC	TX2-4.5V-TH	TX2-L-4.5V-TH	TX2-L2-4.5V-TH	TX2-LT-4.5V-TH
	5 V DC	TX2-5V-TH	TX2-L-5V-TH	TX2-L2-5V-TH	TX2-LT-5V-TH
	6V DC	TX2-6V-TH	TX2-L-6V-TH	TX2-L2-6V-TH	TX2-LT-6V-TH
	9V DC	TX2-9V-TH	TX2-L-9V-TH	TX2-L2-9V-TH	TX2-LT-9V-TH
	12 V DC	TX2-12V-TH	TX2-L-12V-TH	TX2-L2-12V-TH	TX2-LT-12V-TH
	24V DC	TX2-24V-TH	TX2-L-24V-TH	TX2-L2-24V-TH	TX2-LT-24V-TH
	48V DC	TX2-48V-TH	-	-	-

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

2. Surface-mount terminal

1) Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
		Part No.	Part No.	Part No.	Part No.
2c	1.5 V DC	TX2S \square-1.5V-TH	TX2S \square-L-1.5V-TH	TX2S \square-L2-1.5V-TH	TX2S \square-LT-1.5V-TH
	3 V DC	TX2S \square-3V-TH	TX2S \square-L-3V-TH	TX2S \square-L2-3V-TH	TX2S \square-LT-3V-TH
	4.5V DC	TX2S \square-4.5V-TH	TX2S $\square-\mathrm{L}-4.5 \mathrm{~V}-\mathrm{TH}$	TX2S \square-L2-4.5V-TH	TX2S \square-LT-4.5V-TH
	5 V DC	TX2S \square-5V-TH	TX2S \square-L-5V-TH	TX2S \square-L2-5V-TH	TX2S \square-LT-5V-TH
	6V DC	TX2S \square-6V-TH	TX2S \square-L-6V-TH	TX2S \square-L2-6V-TH	TX2S \square-LT-6V-TH
	9 V DC	TX2S \square-9V-TH	TX2S \square-L-9V-TH	TX2S \square-L2-9V-TH	TX2S \square-LT-9V-TH
	12 V DC	TX2S \square-12V-TH	TX2S $\square-\mathrm{L}-12 \mathrm{~V}-\mathrm{TH}$	TX2S \square-L2-12V-TH	TX2S \square-LT-12V-TH
	24V DC	TX2S $\square-24 \mathrm{~V}-\mathrm{TH}$	TX2S $\square-\mathrm{L}-24 \mathrm{~V}-\mathrm{TH}$	TX2S \square-L2-24V-TH	TX2S \square-LT-24V-TH
	48 V DC	TX2S $\square-48 \mathrm{~V}-\mathrm{TH}$	-	-	-

\square : For each surface-mounted terminal identification, input the following letter. SA type: \underline{A}, SS type: \underline{S}
Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

2) Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
		Part No.	Part No.	Part No.	Part No.
2 Form C	1.5 V DC	TX2S \square-1.5V-TH-Z	TX2S \square-L-1.5V-TH-Z	TX2S \square-L2-1.5V-TH-Z	TX2S \square-LT-1.5V-TH-Z
	3V DC	TX2S \square-3V-TH-Z	TX2S \square-L-3V-TH-Z	TX2S \square-L2-3V-TH-Z	TX2S \square-LT-3V-TH-Z
	4.5 V DC	TX2S \square-4.5V-TH-Z	TX2S $\square-\mathrm{L}-4.5 \mathrm{~V}-\mathrm{TH}-\mathrm{Z}$	TX2S \square-L2-4.5V-TH-Z	TX2S \square-LT-4.5V-TH-Z
	5 V DC	TX2S \square-5V-TH-Z	TX2S \square-L-5V-TH-Z	TX2S \square-L2-5V-TH-Z	TX2S \square-LT-5V-TH-Z
	6V DC	TX2S \square-6V-TH-Z	TX2S \square-L-6V-TH-Z	TX2S \square-L2-6V-TH-Z	TX2S \square-LT-6V-TH-Z
	9V DC	TX2S \square-9V-TH-Z	TX2S \square-L-9V-TH-Z	TX2S \square-L2-9V-TH-Z	TX2S \square-LT-9V-TH-Z
	12 V DC	TX2S \square-12V-TH-Z	TX2S \square-L-12V-TH-Z	TX2S \square-L2-12V-TH-Z	TX2S \square-LT-12V-TH-Z
	24V DC	TX2S $\square-24 \mathrm{~V}$-TH-Z	TX2S \square-L-24V-TH-Z	TX2S \square-L2-24V-TH-Z	TX2S \square-LT-24V-TH-Z
	48V DC	TX2S $\square-48 \mathrm{~V}-\mathrm{TH}-\mathrm{Z}$	-	-	-

\square : For each surface-mounted terminal identification, input the following letter. SA type: \underline{A}, SS type: \underline{S}
Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Note: Tape and reel packing symbol " Z " is not marked on the relay. " X " type tape and reel packing (picked from $1 / 2 / 3 / 4$-pin side) is also available.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5 V DC			28.1 mA	178Ω		
6 V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24V DC			5.8 mA	4,114 Ω		
48 V DC			5.6 mA	8,533 Ω	270 mW	$120 \% \mathrm{~V}$ of nominal voltage

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5V DC			22.2 mA	202.5Ω		
5 V DC			20 mA	250Ω		
6V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 ${ }^{\text {d }}$		
24 V DC			4.2 mA	5,760 ${ }^{\text {a }}$		

3) 2 coil latching (L2, LT)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Nomina } \\ \mathrm{cu} \\ {[\pm 10 \%](\mathrm{a}} \end{array}$	perating ent $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomin	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	93.8 mA	93.8 mA	16Ω	16Ω	140 mW	140mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	46.7 mA	64.3Ω	64.3Ω			
4.5 V DC			31 mA	31 mA	145Ω	145Ω			
5V DC			28.1 mA	28.1 mA	178Ω	178Ω			
6 V DC			23.3 mA	23.3 mA	257Ω	257Ω			
9V DC			15.5 mA	15.5 mA	579Ω	579Ω			
12V DC			11.7 mA	11.7 mA	1,028 ${ }^{\text {d }}$	1,028 Ω			
24V DC			5.8 mA	5.8 mA	4,114 Ω	4,114 Ω			

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au plating
Rating	Nominal switching capacity		2 A 30 V DC, $0.5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
	Max. switching power		$60 \mathrm{~W}, 60 \mathrm{VA}$ (resistive load)
	Max. switching voltage		220 V DC, 250 V AC
	Max. switching current		7.5 A (When used at 7.5 A. Regarding connection method, you must follow the precaution, below*.)
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 24 V DC), 270 mW (48 V DC)
		1 coil latching	100 mW (1.5 to 24 V DC)
		2 coil latching	140 mW (1.5 to 24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$2,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), 5×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) (at 20 cpm) Min. $2 \times 10^{5}(7.5 \mathrm{~A}$ inrush $(250 \mathrm{~ms}) / 1.5 \mathrm{~A}$ normal $30 \mathrm{~V} \mathrm{AC}(\cos \phi=0.4))(\mathrm{ON} / \mathrm{OFF}=1 \mathrm{~s} / 9 \mathrm{~s})$
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (up to 24 V coil) $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ $\left[-40^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}\left(48 \mathrm{~V}\right.$ coil) $-40^{\circ} \mathrm{F}$ to $\left.+158^{\circ} \mathrm{F}\right]$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 24).

REFERENCE DATA

1. Electrical life (2×10^{5} operation is possible)

Tested sample:TX2SA-24V-TH, 6 pcs.
Switching frequency: ON:OFF = 1s:9s
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$
Circuit

*Precaution

When using at 7.5 A, connection of NO (pin \#5 and \#8) and COM (pin \#4 and \#9) in the circuit is required.

Condition: 30 V AC
Inrush current 7.5 A (execution value),
inrush time 250 ms
Normal current 1.5 A (execution value),
(inductive load $\cos \phi=0.4$)
Inrush current wave form vs time

\longrightarrow Time (ms), Interval (200ms)

Pin layout and schematic (BOTTOM VIEW)

$$
1 \text { coil latching }
$$

For general REFERENCE DATA, DIMENSIONS and NOTES, please refer to the "TX Relay".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Low Signal Relays - PCB category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
6-1393813-4 6-1462039-0 6-1617529-6 617-12 M39016/11-048P 67RPCX-3 7-1393809-0 7-1393813-3 7556072001 80.010.4522.1 FTRB4GA006Z FW1210S02 9-1393813-6 9-1617519-3 9-1617582-5 G6AK-2-H-DC5 A-1.5W-K DF2E-L2-DC3V DS1EM24J DS1EM5J DS1ES5J DS4E-M-DC5V-H48 EC2-4.5TNJ EC2-9NJ B07B939BC1-0868 1608043-4 1617076-5 1617117-3 1617137-2 1617518-5 1617560 HMB1130K00 HMB1131S06 HMS1119S01 HMS1131S10 HMS1201S03 HMS1201S87 HMS1205S02 2-1393807-6 2-1617071-2 2-1617594-1 JMGSC-5LW K6-PS KHS-17D11-110 9-1393761-0 9-1617352-3 9-1617583-1 276XAXH-9D 1617072-3 1617075-4

