Panasonic

FEATURES

1. $2,000 \mathrm{~V}$ breakdown voltage between contact and coil
The body block construction of the coil that is sealed at formation offers a high breakdown voltage of $2,000 \mathrm{~V}$ between contact and coil, and 1,000 V between open contacts.
2. Outstanding surge resistance Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu \mathrm{sec}$. (FCC part 68) Surge breakdown voltage between contact and coil:
$2,500 \vee 2 \times 10 \mu \mathrm{sec}$. (Bellcore)

Best seller with broad lineup and AC 2000 V breakdown voltage.

TX RELAYS

3. Nominal operating power: High sensitivity of 140 mW
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.
4. High contact capacity: 2 A 30 V DC
5. Compact size
$15.0(\mathrm{~L}) \times 7.4(\mathrm{~W}) \times 8.2(\mathrm{H})$
$591(\mathrm{~L}) \times .291(\mathrm{~W}) \times .323(\mathrm{H})$
6. The use of gold-clad twin crossbar contacts ensures high contact reliability.
*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (max. 10V DC 10 mA).
7. Outstanding vibration and shock resistance
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of
3.3 mm . 130 inch)

Destructive vibration resistance:
10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.
9. A range of surface-mount types is also available
SA: Low-profile surface-mount terminal type
SS: Space saving surface-mount terminal type
10.Sealed according to RTIII (IP67)

TYPICAL APPLICATIONS

1. Communications (xDSL, Transmission)
2. Measurement
3. Security
4. Home appliances, and audio/visual equipment
5. Automotive equipment
6. Medical equipment

ORDERING INFORMATION

Contact arrangement TX 2

2: 2 Form C
Surface-mount availability
Nil: Standard PC board terminal type
SA: SA type
SS: SS type
Operating function
Nil: Single side stable
L : 1 coil latching
L2: 2 coil latching
LT: 2 coil latching
Terminal shape
Nil: Standard PC board terminal or surface-mount terminal
Nominal coil voltage (DC)*
$1.5,3,4.5,5,6,9,12,24,48 \mathrm{~V}$
Contact material
Nil: Standard contact (Ag+Au clad)
1: AgPd contact (low level load); AgPd+Au clad (stationary), AgPd (movable)
Packing style
Nil: Tube packing
X: Tape and reel (picked from 1/3/4/5-pin side)
Z: Tape and reel packing (picked from the 8/9/10/12-pin side)
Notes: 1. *48 V coil type: Single side stable only
2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

TYPES

1．Standard PC board terminal

Contact arrangement		Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
	voltage	Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TX2－1．5V	TX2－L－1．5V	TX2－L2－1．5V	TX2－LT－1．5V
	3V DC	TX2－3V	TX2－L－3V	TX2－L2－3V	TX2－LT－3V
	4.5 V DC	TX2－4．5V	TX2－L－4．5V	TX2－L2－4．5V	TX2－LT－4．5V
	5 V DC	TX2－5V	TX2－L－5V	TX2－L2－5V	TX2－LT－5V
	6V DC	TX2－6V	TX2－L－6V	TX2－L2－6V	TX2－LT－6V
	9V DC	TX2－9V	TX2－L－9V	TX2－L2－9V	TX2－LT－9V
	12 V DC	TX2－12V	TX2－L－12V	TX2－L2－12V	TX2－LT－12V
	24 V DC	TX2－24V	TX2－L－24V	TX2－L2－24V	TX2－LT－24V
	48 V DC	TX2－48V	－	－	－

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．

2．Surface－mount terminal

1）Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2c	1.5 V DC	TX2SD－1．5V	TX2SD－L－1．5V	TX2SD－L2－1．5V	TX2SD－LT－1．5V
	3V DC	TX2SD－3V	TX2SD－L－3V	TX2S】－L2－3V	TX2SD－LT－3V
	4.5 V DC	TX2SD－4．5V	TX2SD－L－4．5V	TX2SD－L2－4．5V	TX2SD－LT－4．5V
	5 V DC	TX2S $\square^{-5 \mathrm{~V}}$	TX2SD－L－5V	TX2SD－L2－5V	TX2SD－LT－5V
	6V DC	TX2S】－6V	TX2SD－L－6V	TX2S］－L2－6V	TX2SD－LT－6V
	9V DC	TX2SD－9V	TX2SD－L－9V	TX2S】－L2－9V	TX2S】－LT－9V
	12 V DC	TX2SD－12V	TX2S】－L－12V	TX2SD－L2－12V	TX2SD－LT－12V
	24 V DC	TX2S】－24V	TX2S］－L－24V	TX2SD－L2－24V	TX2SD－LT－24V
	48 V DC	TX2SD－48V	－	－	－

D：For each surface－mounted terminal identification，input the following letter．SA type：\underline{A}, SS type：\underline{S}
Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．

2）Tape and reel packing

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
	voltage	Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TX2SD－1．5V－Z	TX2S］－L－1．5V－Z	TX2SD－L2－1．5V－Z	TX2SD－LT－1．5V－Z
	3 V DC	TX2SD－3V－Z	TX2SD－L－3V－Z	TX2SD－L2－3V－Z	TX2SD－LT－3V－Z
	4.5 V DC	TX2S］－4．5V－Z	TX2S】－L－4．5V－Z	TX2SD－L2－4．5V－Z	TX2SD－LT－4．5V－Z
	5 V DC	TX2SD－5V－Z	TX2SD－L－5V－Z	TX2SD－L2－5V－Z	TX2SD－LT－5V－Z
	6V DC	TX2SD－6V－Z	TX2SD－L－6V－Z	TX2SD－L2－6V－Z	TX2SD－LT－6V－Z
	9V DC	TX2SD－9V－Z	TX2SD－L－9V－Z	TX2SD－L2－9V－Z	TX2SD－LT－9V－Z
	12 V DC	TX2S］－12V－Z	TX2S］－L－12V－Z	TX2S－－L2－12V－Z	TX2SD－LT－12V－Z
	24 V DC	TX2S \triangle－24V－Z	TX2S】－L－24V－Z	TX2SD－L2－24V－Z	TX2SD－LT－24V－Z
	48 V DC	TX2S \triangle－48V－Z	－	－	－

D：For each surface－mounted terminal identification，input the following letter．SA type：\underline{A}, SS type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case： 1,000 pcs．
Notes：1．Tape and reel packing symbol＂－Z＂is not marked on the relay．＂X＂type tape and reel packing（picked from 1／2／3／4－pin side）is also available．
2．Please add＂－1＂to the end of the part number for AgPd contacts（low level load）．

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5V DC			28.1 mA	178Ω		
6 V DC			23.3 mA	257Ω		
9 V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028		
24V DC			5.8 mA	$4,114 \Omega$		
48 V DC			5.6 mA	8,533	270mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
5 V DC			20 mA	250Ω		
6 V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440		
24V DC			4.2 mA	5,760		

3) 2 coil latching (L2, LT)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating nt $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil } r \\ {[\pm 10 \%](a} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomin	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	133.9 mA	133.9 mA	11.2Ω	11.2Ω	200mW	200mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			66.7 mA	66.7 mA	45Ω	45Ω			
4.5 V DC			44.5 mA	44.5 mA	101.2Ω	101.2Ω			
5 V DC			40 mA	40 mA	125Ω	125Ω			
6 V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12 V DC			16.7 mA	16.7 mA	720Ω	720Ω			
24V DC			8.3 mA	8.3 mA	2,880 Ω	2,880 Ω			

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)
Rating	Nominal switching capacity		Standard contact: 2 A 30 V DC, AgPd contact: 1 A 30 V DC (resistive load)
	Max. switching power		Standard contact: 60 W (DC), AgPd contact: 30 W (DC) (resistive load)
	Max. switching voltage		220 V DC
	Max. switching current		Standard contact: 2 A, AgPd contact: 1 A
	Min. switching capacity (Reference value) ${ }^{1 *}$		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 24 V DC), 270 mW (48 V DC)
		1 coil latching	100 mW (1.5 to 24 V DC)
		2 coil latching	200 mW (1.5 to 24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1min. (Detection current: 10 mA)
		Between contact and coil	2,000 Vrms for 1min. (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1min. (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. 1,000 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 times/min.)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), 5×10^{5} (1 A 30 V DC resistive) (at 20 times/min.)
Conditions	Conditions for operation, transport and storage ${ }^{2 *}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (up to 24 V coil) $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ (up to 24 V coil) $\left[-40^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}\left(48 \mathrm{~V}\right.$ coil) $-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}(48 \mathrm{~V}$ coil) $)$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 times/min.
Unit weight			Approx. 2 g .071 oz

1* This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type is available for low level load switching [10V DC, 10mA max. level].)
2* Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1. Maximum switching capacity

2. Life curve

3. Mechanical life

Tested sample: TX2-5V, 10 pcs. Operating speed: 180 times $/ \mathrm{min}$.

4. Electrical life (2A 30V DC resistive load)

Tested sample: TX2-5V, 6 pcs.
Operating speed: 20 times $/ \mathrm{min}$.

5-(2). Coil temperature rise
Tested sample: TX2-48V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7. Ambient temperature characteristics Tested sample: TX2-5V, 5 pcs.

9 Malfunctional shock (single side stable) Tested sample: TX2-5V, 6 pcs.

5-(1). Coil temperature rise
Tested sample: TX2-5V, 6 pcs
Point measured: Inside the coil Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

6-(2). Operate and release time (without diode) Tested sample: TX2-5V, 10 pcs.

8-(2). High frequency characteristics (Insertion loss)
Tested sample: TX2-12V, 2 pcs.

10-(2). Influence of adjacent mounting Tested sample: TX2-12V, 6 pcs.

(35 mA 48 V DC wire spring relay load)

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Note: Data of surface-mount type are the same as those of PC board terminal type.
DIMENSIONS (mm inch)

1. Standard PC board terminal

CAD Data

Single side stable and 1 coil latching type
External dimensions
Standard PC board terminal

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
Single side stable

(Deenergized condition)

1 coil latching

(Reset condition)

PC board pattern
(Bottom view)

Tolerance: $\pm 0.1 \pm .004$

2 coil latching type (L2, LT)

External dimensions
Standard PC board terminal

General tolerance: $\pm 0.3 \pm .012$
Schematic (Bottom view)
2 coil latching (L2)
2 coil latching (LT)

(Reset condition)

(Reset condition)

2. Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)		Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)	
	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)
SA type				
SS type				

Schematic (Top view)

(Deenergized condition)

1 coil latching

2 coil latching (L2)

(Reset condition)

2 coil latching (LT)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type

(ii) SS type
(2) Dimensions of plastic reel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C: $9.8 \mathrm{~N}\{1 \mathrm{kgf}$ or less

Please chuck the \square portion.
Avoid chucking the center of the relay.
In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Industrial Relays category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
6-1618400-7 686-117111 686-120111 EV250-4A-02 EV250-6A-01 FCA-125-CX8 FCA-410-138 8-1618393-1 GCA32A208VAC60HZ GCA32A220VAC50/60HZ GCA32A230VAC50/60HZ GCA32A240VAC50/60HZ GCA32A48VAC60HZ GCA63A120VAC50/60HZ GCA63A208VAC60HZ GCA63A220VAC60HZ GCA63A230VAC50/60HZ GCA63A240VAC50/60HZ GCA63A277VAC60HZ GCA63A48VAC60HZ GCA63A500VAC50/60HZ GCA63A600VAC60HZ GCA800A200VACDC GCA95A110VAC50/60HZ GCA95A120VAC50/60HZ GCA95A12VDC GCA95A240VAC50/60HZ GCA95A24VAC50/60HZ GCA95A48VAC60HZ ACC530U20 ACC730U30 1395832-1 RM699BV-3011-85-1005 RMIA210230AC RMIA45024AC 1423675-8 B07B032AC1-0329 B329 1617807-1 N417 P25-E5019-1 P30C42A12D1-120 2-1618398-1 PBO-18A1218 2307497 RPYA00324LT RPYA003A120LT KR-4539-1 RT334012WG S160156115

