

RoHS compliant

FEATURES

1. Approved to the supplementary insulation class in the EN standards

 (EN60950).The insulation distance between the contact and coil meet the supplementary insulation class of the EN60950 standards as required for equipment connected to the telephone lines in Europe.
Satisfies the following conditions:

- Clearances: 2.0 mm .079 inch or more
- Creepage distance: 2.5 mm .098 inch or more

2. 3,000 V breakdown voltage between contact and coil.
3. Nominal operating power:

High sensitivity of 200 mW
4. High contact capacity: 2 A 30 V DC
5. High contact reliability

High contact reliability is achieved by the use of gold-clad twin crossbar contacts, low-gas formation materials, mold sealing the coil section, and by controlling organic gas in the coil. *We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).

TYPICAL APPLICATIONS

1. Facsimile
2. Modem
3. Communications (xDSL)
4. Medical equipment
5. Security

ORDERING INFORMATION

[^0]
TYPES

1. Standard (B.B.M.) type
1) Standard PC board terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching
	voltage	Part No.	Part No.
2 Form C	3 V DC	TXD2-3V	TXD2-L-3V
	4.5 V DC	TXD2-4.5V	TXD2-L-4.5V
	5 V DC	TXD2-5V	TXD2-L-5V
	6 V DC	TXD2-6V	TXD2-L-6V
	9 V DC	TXD2-9V	TXD2-L-9V
	12 VDC	TXD2-12V	TXD2-L-12V
	24 VDC	TXD2-24V	TXD2-L-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add " -1 " to the end of the part number for AgPd contacts (low level load).
2) Surface-mount terminal
(1) Tube packing

Contact arrangement	Nominal coil	Single side stable	1 coil latching
	voltage	Part No.	Part No.
2 Form C	3 V DC	TXD2SA-3V	TXD2SA-L-3V
	4.5 V DC	TXD2SA-4.5V	TXD2SA-L-4.5V
	5 V DC	TXD2SA-5V	TXD2SA-L-5V
	6 VDC	TXD2SA-6V	TXD2SA-L-6V
	9 V DC	TXD2SA-9V	TXD2SA-L-9V
	12 VDC	TXD2SA-12V	TXD2SA-L-12V
	24 V DC	TXD2SA-24V	TXD2SA-L-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

(2) Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching
		Part No.	Part No.
2 Form C	3 V DC	TXD2SA-3V-Z	TXD2SA-L-3V-Z
	4.5 V DC	TXD2SA-4.5V-Z	TXD2SA-L-4.5V-Z
	5 V DC	TXD2SA-5V-Z	TXD2SA-L-5V-Z
	6 V DC	TXD2SA-6V-Z	TXD2SA-L-6V-Z
	9 V DC	TXD2SA-9V-Z	TXD2SA-L-9V-Z
	12 V DC	TXD2SA-12V-Z	TXD2SA-L-12V-Z
	24 V DC	TXD2SA-24V-Z	TXD2SA-L-24V-Z

Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. " X " type tape and reel packing (picked from $1 / 3 / 4 / 5$-pin side) is also available. 2. Please add " -1 " to the part number for AgPd contacts (low level load). (Ex. TXD2SA-3V-1-Z)

2. M.B.B type

1) Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3 V DC	TXD2-2M-3V
	4.5 V DC	TXD2-2M-4.5V
	5 V DC	TXD2-2M-5V
	6 V DC	TXD2-2M-6V
	9 V DC	TXD2-2M-9V
	12 V DC	TXD2-2M-12V
	24 V DC	TXD2-2M-24V

[^1]2) Surface-mount terminal
(1) Tube packing

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3 V DC	TXD2SA-2M-3V
	4.5 V DC	TXD2SA-2M-4.5V
	5 V DC	TXD2SA-2M-5V
	6 V DC	TXD2SA-2M-6V
	9 V DC	TXD2SA-2M-9V
	12 VDC	TXD2SA-2M-12V
	24 V DC	TXD2SA-2M-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

(2) Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3 V DC	TXD2SA-2M-3V-Z
	4.5 V DC	TXD2SA-2M-4.5V-Z
	5 V DC	TXD2SA-2M-5V-Z
	6 V DC	TXD2SA-2M-6V-Z
	9 V DC	TXD2SA-2M-9V-Z
	12 VDC	TXD2SA-2M-12V-Z
	24 V DC	TXD2SA-2M-24V-Z

Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Notes: 1. Types designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered.
However, please contact us if you need parts for use in low level load. (Ex. TXD2SA-2M-3V-1-Z)
2. Tape and reel packing symbol "- Z " is not marked on the relay. " X " type tape and reel packing (picked from $1 / 3 / 4 / 5$-pin side) is also available.

RATING

1. Coil data

[Standard (B.B.M.) type]

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	45Ω	200 mW	$120 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	101Ω		
5 V DC			40.0 mA	125Ω		
6 V DC			33.3 mA	180Ω		
9 V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			9.6 mA	2,504 Ω	230 mW	

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	50.0 mA	60Ω	150 mW	$120 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			33.3 mA	135Ω		
5 V DC			30.0 mA	166Ω		
6 V DC			25.0 mA	240Ω		
9 V DC			16.7 mA	540Ω		
12 V DC			12.5 mA	960Ω		
24 V DC			7.1 mA	3,388 Ω	170 mW	

[M.B.B. type]

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	83.3 mA	36Ω	250 mW	$120 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			55.6 mA	81Ω		
5 V DC			50.0 mA	100Ω		
6 V DC			41.7 mA	144Ω		
9 V DC			27.8 mA	324Ω		
12 VDC			20.8 mA	576Ω		
24 V DC			11.3 mA	2,133 Ω	270 mW	

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics Contact	Item		Specifications	
	Arrangement		2 Form C	2 Form D (M.B.B.type)
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)	
Rating	Nominal switching capacity		Standard contact: 2 A 30 V DC, AgPd contact: 1 A 30 V DC (resistive load)	1 A 30 V DC (resistive load)
	Max. switching power		Standard contact: 60 W (DC), AgPd contact: 30 W (DC) (resistive load)	30 W (DC) (resistive load)
	Max. switching voltage		220 V DC	110 V DC
	Max. switching current		Standard contact: 2 A, AgPd contact: 1 A	1 A
	Min. switching capacity (Reference value)* ${ }^{\star}$		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC	
	Nominal operating power	Single side stable	200 mW (3 to 12 V DC), 230 mW (24 V DC)	250 mW (1.5 to 12 V DC), 270 mW (24 V DC)
		1 coil latching	150 mW (3 to 12 V DC), 170mW (24 V DC)	-
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$3,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	$3,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1 min . (D	etection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)	-
		Between contacts and coil ${ }^{* 1}$	6,000 V, $1.2 \times 50 \mu \mathrm{~s}$	
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\text { Max. } 50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A [1A: M.B.B.].)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. 1,000 m/s ${ }^{\text {2 }}$ \{100G\} (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 5 mm	
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)	Min. 10^{7} (at 180 cpm)
	Electrical (Standard contact)		Min. 10^{5} (2 A 30 V DC resistive), Min. 5×10^{5} (1 A 30 V DC resistive) (at 20 cpm)	Min. 10^{5} (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		20 cpm	
Unit weight			Approx. 2 g .071 oz	

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. AgPd contact type is available for low level load switching (10 V DC, 10 mA max. level).
*2 The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "AMBIENT ENVIRONMENT" in GENERAL APPLICATION GUIDELINES.

REFERENCE DATA

1. Maximum switching capacity

2. Life curve

3. Mechanical life

Tested sample: TXD2-5V, 10 pcs.
Operating speed: 180 cpm

4. Electrical life (2 A 30 V DC resistive load)

Tested sample: TXD2-5V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

5-(2). Coil temperature rise
Tested sample: TXD2-24V, 6 pcs.
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7. Ambient temperature characteristics

Tested sample: TXD2-5V, 5 pcs.

10. Malfunctional shock (single side stable)

Tested sample: TXD2-5V, 6 pcs

Change of contact resistance

6-(1). Operate/release time characteristics (with diode)
Tested sample: TXD2-5V, 10 pcs.

8. High-frequency characteristics (Isolation)
Tested sample: TXD2-12V, 2 pcs.

5-(1). Coil temperature rise
Tested sample: TXD2-5V, 6 pcs.
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

6-(2). Operate/release time characteristics (without diode)
Tested sample: TXD2-5V, 10 pcs.

9. High-frequency characteristics (Insertion loss)
Tested sample: TXD2-12V, 2 pcs.

11-(1). Influence of adjacent mounting Tested sample: TXD2-12V, 6 pcs.

11-(2). Influence of adjacent mounting Tested sample: TXD2-12V, 6 pcs.

12. Actual load test (35 mA 48 V DC wire spring relay load)

Tested sample: TXD2-5V, 6 pcs. Change of pick-up and drop-out voltage

Circuit

Change of contact resistance

13-(1). Distribution of M.B.B. time Tested sample: TXD2-2M-5V, 50 pcs. Terminal No. 3-4-5: ON

Terminal No. 3-4-5: OFF

13-(2). Distribution of M.B.B. time Tested sample: TXD2-2M-5V, 50 pcs. Terminal No. 8-9-10: ON

Terminal No. 8-9-10: OFF

14. Surge breakdown voltage test Tested sample: TXD2-3V, 30 pcs.

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/ 1) Standard PC board terminal

CAD Data

External dimensions Standard PC board terminal

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
Single side stable 1 coil latching

(Deenergized condition)

(Reset condition)

2) Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)	Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)
	Single side stable and 1 coil latching	

Schematic (Top view)
Single side stable
1 coil latching

(Deenergized condition)

(Reset condition)

NOTES

1. Packing style

1) Tube packing

The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
mm inch

(2) Dimensions of plastic reel

3) Ambient temperature when transporting and during storage with the product in its original packaging:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

Chucking pressure in the direction A: $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Please chuck the \square portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

3. M.B.B. type

A small OFF time may be generated by the contact bounce during contact switching. Check the actual circuit carefully.
If the relay is dropped accidentally, check the appearance and characteristics including M.B.B. time before use.

Measuring condition of M.B.B. time

For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Low Signal Relays - PCB category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
6-1393813-4 6-1462039-0 6-1617529-6 617-12 M39016/11-048P 67RPCX-3 7-1393809-0 7-1393813-3 7556072001 80.010.4522.1 FTRB4GA006Z FW1210S02 9-1393813-6 9-1617519-3 9-1617582-5 G6AK-2-H-DC5 A-1.5W-K DF2E-L2-DC3V DS1EM24J DS1EM5J DS1ES5J DS4E-M-DC5V-H48 EC2-4.5TNJ EC2-9NJ B07B939BC1-0868 1608043-4 1617076-5 1617117-3 1617137-2 1617518-5 1617560 HMB1130K00 HMB1131S06 HMS1119S01 HMS1131S10 HMS1201S03 HMS1201S87 HMS1205S02 2-1393807-6 2-1617071-2 2-1617594-1 JMGSC-5LW K6-PS KHS-17D11-110 9-1393761-0 9-1617352-3 9-1617583-1 276XAXH-9D 1617072-3 1617075-4

[^0]: Note: In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

[^1]: Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

