Panasonic ideas for life

RoHS compliant

Very High Sensitivity,
50 mW (nominal operating) Relay with LT style pin layout

FEATURES

1. Nominal operating power: High sensitivity of 50 mW By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 50 mW (minimum operating power of 32 mW) has been achieved.
2. Compact size
$15.0(\mathrm{~L}) \times 7.4(\mathrm{~W}) \times 8.2(\mathrm{H}) .591(\mathrm{~L}) \times$ $.291(\mathrm{~W}) \times .323(\mathrm{H})$
3. High contact reliability

High contact reliability is achieved by the use of gold-clad twin crossbar contacts, low-gas formation materials, mold sealing the coil section, and by controlling organic gas in the coil.
*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).
4. Outstanding surge resistance. Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu \mathrm{sec}$. (FCC part 68)
Surge breakdown voltage between contact and coil: $2,500 \vee 2 \times 10 \mu \mathrm{sec}$. (Telcordia)
5. Low thermal electromotive force (approx. $0.3 \mu \mathrm{~V}$)
The structure of the mold-sealed body block of the coil section achieves nominal operating power of 50 mW and high sensitivity, along with low thermal electromotive force, reduced to approximately $0.3 \mu \mathrm{~V}$.
6. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Communications
(XDSL, Transmission)
2. Measurement
3. Security
4. Home appliances, and audio/visual equipment
5. Medical equipment

ORDERING INFORMATION

TYPES

1. Standard PC board terminal

Contact arrangement		Single side stable	2 coil latching
	voltage	Part No.	Part No.
2 Form C	3V DC	TXS2-3V	TXS2-LT-3V
	4.5 V DC	TXS2-4.5V	TXS2-LT-4.5V
	6V DC	TXS2-6V	TXS2-LT-6V
	9 V DC	TXS2-9V	TXS2-LT-9V
	12 V DC	TXS2-12V	TXS2-LT-12V
	24V DC	TXS2-24V	TXS2-LT-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2. Surface-mount terminal

1) Tube packing

Contact arrangement	Nominal coil	Single side stable	2 coil latching
	voltage	Part No.	Part No.
2 Form C	3V DC	TXS2SA-3V	TXS2SA-LT-3V
	4.5 V DC	TXS2SA-4.5V	TXS2SA-LT-4.5V
	6V DC	TXS2SA-6V	TXS2SA-LT-6V
	9V DC	TXS2SA-9V	TXS2SA-LT-9V
	12 V DC	TXS2SA-12V	TXS2SA-LT-12V
	24V DC	TXS2SA-24V	TXS2SA-LT-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add " -1 " to the end of the part number for AgPd contacts (low level load).

2) Tape and reel packing			
Contact	Nominal coil	Single side stable	2 coil latching
arrangement	voltage	Part No.	Part No.
2 Form C	3V DC	TXS2SA-3V-Z	TXS2SA-LT-3V-Z
	4.5V DC	TXS2SA-4.5V-Z	TXS2SA-LT-4.5V-Z
	6V DC	TXS2SA-6V-Z	TXS2SA-LT-6V-Z
	9V DC	TXS2SA-9V-Z	TXS2SA-LT-9V-Z
	12 V DC	TXS2SA-12V-Z	TXS2SA-LT-12V-Z
	24V DC	TXS2SA-24V-Z	TXS2SA-LT-24V-Z

Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. " X " type tape and reel packing (picked from 1/2/3/4-pin side) is also available.
2. Please add " -1 " to the end of the part number for AgPd contacts (low level load). (Ex. TXS2SA-3V-1-Z)

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Coil resistance $[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	80% V or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	16.7 mA	180Ω	50 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			11.1 mA	405Ω		
6 V DC			8.3 mA	720Ω		
9V DC			5.6 mA	1,620		
12 V DC			4.2 mA	2,880 Ω		
24V DC			2.9 mA	8,229 2	70mW	

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$		Coil resistance$[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	23.3 mA	23.3 mA	129Ω	129Ω	70 mW	70 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			15.6 mA	15.6 mA	289Ω	289Ω			
6V DC			11.7 mA	11.7 mA	514Ω	514Ω			
9V DC			7.8 mA	7.8 mA	1,157 Ω	1,157 Ω			
12 V DC			5.8 mA	5.8 mA	2,057 ${ }^{\text {, }}$	2,057 Ω			
24V DC			6.3 mA	6.3 mA	3,840 2	3,840 2	150mW	150mW	

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)
Rating	Nominal switching capacity		1 A 30 V DC (resistive load)
	Max. switching power		30 W (DC) (resistive load)
	Max. switching voltage		110 V DC
	Max. switching current		1 A
	Min. switching capacity (Reference value)**		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$
	Nominal operating power	Single side stable	50 mW (3 to 12 V DC), 70 mW (24 V DC)
		2 coil latching	70 mW (3 to 12 V DC), 150 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	1,800 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	2,500 V ($2 \times 10 \mu \mathrm{~s}$) (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10 $\mu \mathrm{s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical		Min. 2×10^{5} (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type is available for low level load switching [10V DC, 10 mA max. level])
*2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 24).

REFERENCE DATA

2. Life curve

3. Mechanical life

Tested sample: TXS2-4.5V, 10 pcs.
Operating speed: 180 cpm

4. Electrical life (1 A 30 V DC resistive load)

Tested sample:TXS2-4.5V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

\longrightarrow No. of operations, $\times 10^{4}$
5-(2). Coil temperature rise
Tested sample:TXS2-24V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7. Ambient temperature characteristics Tested sample: TXS2-4.5V, 5 pcs.

9-(1). Malfunctional shock (single side stable) Tested sample: TXS2-4.5V, 6 pcs.

5-(1). Coil temperature rise
Tested sample:TXS2-4.5V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

6-(2). Operate and release time (without diode) Tested sample: TXS2-4.5V, 10 pcs.

8-(2). High frequency characteristics (Insertion loss)
Tested sample: TXS2-4.5V, 2 pcs.

9-(2). Malfunctional shock (latching)
 Tested sample: TXS2-LT-4.5V, 6 pcs.

10. Thermal electromotive force Tested sample: TXS2-4.5V, 6 pcs.

11-(1). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.

12. Pulse dialing test
(35 mA 48 V DC wire spring relay load)
Tested sample:TXS2-4.5V, 6 pcs.

11-(2). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.

11-(3). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.

Change of contact resistance

Note: Data of surface-mount type are the same as those of PC board terminal type.

DIMENSIONS (mm inch) The CAD data of the products with a CADData mark can be downloaded from: htpp://industrial.panasonic.com/ac/el

1. Standard PC board terminal and Self clinching terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)		PC board pattern (Bottom view) (Tolerance: $\pm 0.1 \pm .004$)	
	Single side stable type	2 coil latching type	Single side stable type	2 coil latching type
Standard PC board terminal				

Schematic (Bottom view)

Single side stable
 2 coil latching

(Deenergized condition)

(Reset condition)

2. Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)		Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)	
	Single side stable type	2 coil latching type	Single side stable type	2 coil latching type
SA type				

Schematic (Top view)

Single side stable 2 coil latching

(Deenergized condition) (Reset condition)

NOTES

1. Packing style
1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
mm inch

(2) Dimensions of plastic reel
mm inch

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A: $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

> For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Panasonic manufacturer:
Other Similar products are found below :
ECE-A1HKAR47 ELK-EA102FA ELC-09D151F EEC-S0HD224H ELL-5PS3R3N HC2-H-DC48V-F HL2-HP-AC120V-F HL2-HP-DC12V-F HL2-HP-DC6V-F HL2-HP-DC24V-F HC4-H-DC24V HL2-HTM-DC24V-F HL2-HTM-AC24V-F HC3-HL-AC120V-F HC4-HAC120V AMV9003 EEC-RG0V155H AZH2031 RP-SDMF64DA1 RP-SDMF32DA1 EEF-UD0K101R RP-SMLE08DA1 EVMF6SA00B55 ELC-12D101E ERA-3YEB272V EEC-RF0V684 ERA-3YEB153V ELC-3FN2R2N ERA-3YEB512V ERJ-1GEJ564C ERZV20R391 ELL-6RH221M ETQ-P3W3R3WFN ELL-ATV681M ELL-VGG4R7N EEF-UD0J101R ECQ-U2A474ML LC-R121R3P ELKEA100FA EVP-AKB11A ECQ-U2A154ML ELK-E101FA ERA-3YEB303V ERA-V15J100V ERZ-V05V680CB EEF-UE0K101R EECS0HD224V EVQ-PAC05R EVQ-PAG04M ELK-EA222FA

