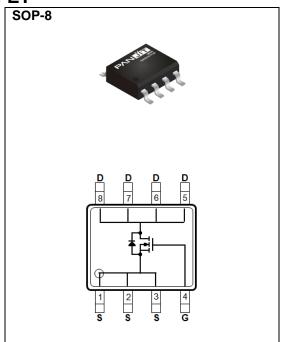


150V N-Channel Enhancement Mode MOSFET

Voltage 150 V Current 9 A

Features


- RDS(ON), VGS@10V, ID@9A< $54m\Omega$
- RDS(ON), VGS@7V, ID@5A<59m Ω
- Excellent FOM
- Standard Level Drive
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard

Mechanical Data

• Case: SOP-8 Package

• Terminals : Solderable per MIL-STD-750, Method 2026

• Approx. Weight: 0.083 grams

Maximum Ratings and Thermal Characteristics (T_A=25°C unless otherwise noted)

PARAMETER		SYMBOL	LIMIT	UNITS	
Drain-Source Voltage		V_{DS}	150	V	
Gate-Source Voltage		V_{GS}	±20	v	
Continuous Drain Current(Note 3)	T _C =25°C		9		
	T _C =100°C	l _D	5.6	А	
Pulsed Drain Current(Note 1)	Tc=25°C	I _{DM}	36		
Power Dissipation	Tc=25°C	D-	10.4	W	
	T _C =100°C	Po	4.2		
Continuous Drain Current(Note 4)	T _A =25°C		3.9	А	
	T _A =70°C	I _D	3.1		
Power Dissipation	T _A =25°C	PD	2.1	W	
	T _A =70°C		1.3		
Single Pulse Avalanche Current(Note 5)		las	10	А	
Single Pulse Avalanche Energy ^(Note 5)		E _{AS}	32	mJ	
Operating Junction and Storage Temperature Range		T _J ,T _{STG}	-55~150	°C	
Thermal Resistance ^(Note 4)	Junction to Case	R _{θJC}	12	°C/W	
	Junction to Ambient	R _{θJA}	60		

Electrical Characteristics (T_A=25°C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS	
Static							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	150	-	-	- V	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2	3	4	V	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =10V, I _D =9A	1	43	54		
		V _{GS} =7V, I _D =5A	=5A - 45 59		59	mΩ	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V, V _{GS} =0V	ı	-	1	uA	
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA	
Dynamic ^(Note 6)						_	
Total Gate Charge	Q_g	V _{DS} =75V, I _D =9A,	ı	22	29	nC	
Gate-Source Charge	Qgs		ı	7	-		
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6	-		
Input Capacitance	Ciss		-	1116	1450	pF	
Output Capacitance	Coss	V _{DS} =75V, V _{GS} =0V,	-	81	142		
Reverse Transfer Capacitance	Crss	f=1MHz	-	23	-		
Gate resistance	Rg	f=1MHz	-	0.8	-	Ω	
Turn-On Delay Time	td _(on)	\(\(\begin{array}{cccccccccccccccccccccccccccccccccccc	-	8.4	-	ns	
Turn-On Rise Time	tr	V _{DS} =75V, I _D =9A,	-	14	-		
Turn-Off Delay Time	td(off)	$V_{GS}=10V, R_{G}=3\Omega$ (Note 2)	-	17	-		
Turn-Off Fall Time	tf	(NOTE 2)	-	11	-		
Drain-Source Diode							
Diode Forward Current	Is	T 05°0	-	-	9	A	
Pulsed Diode Forward Current	I _{SM}	T _C =25°C	-	-	36		
Diode Forward Voltage	V _{SD}	I _S =10A, V _{GS} =0V	-	0.9	1.3	V	
Reverse Recovery Time	Trr	V _{DD} =75V,V _{GS} =0V	-	58	-	ns	
Reverse Recovery Charge	Qrr	Is=20A,dIs/dt=100A/us	-	90	-	nC	

NOTES:

- 1. Pulse width<100us, Duty cycle<2%.
- 2. Essentially independent of operating temperature typical characteristics.
- 3. Chip capability with an ReJC=12°C/W.
- 4. R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Mounted on a 1 inch² with 2oz.square pad of copper.
- 5. E_{AS} is calculated based on the condition of L=1mH, I_{AS} =8A, V_{DD} =30V, V_{GS} =10V. 100% test at L=0.1mH, I_{AS} =10A in production.
- 6. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTIC CURVES

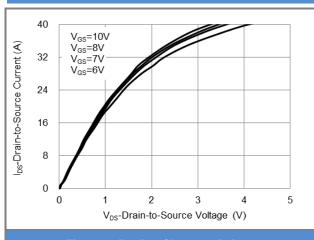
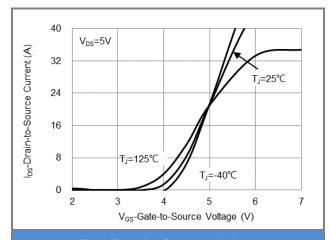



Fig.1 On-Region Characteristics

Fig.2 Transfer Characteristics

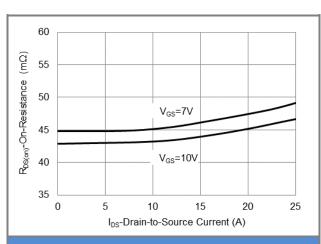


Fig.3 On-Resistance vs. Drain Current

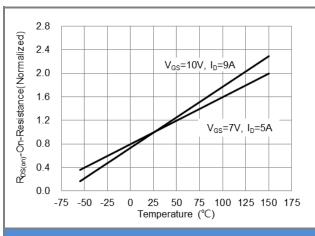
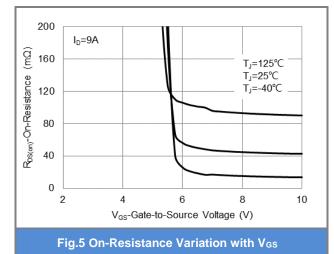



Fig.4 On-Resistance vs. Junction temperature

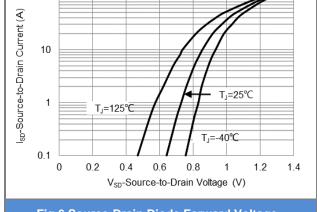


Fig.6 Source-Drain Diode Forward Voltage

100

TYPICAL CHARACTERISTIC CURVES

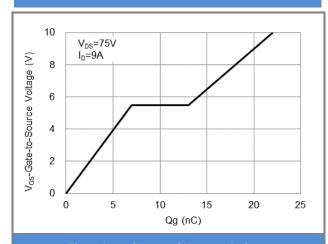


Fig.7 Gate-Charge Characteristics

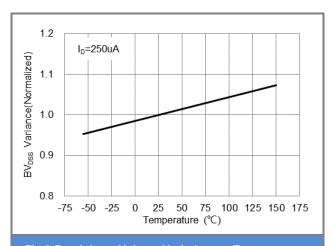


Fig.8 Breakdown Voltage Variation vs. Temperature

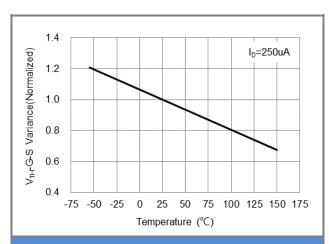


Fig.9 Threshold Voltage Variation with Temperature

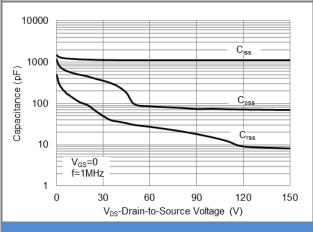
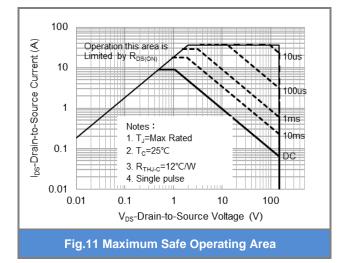
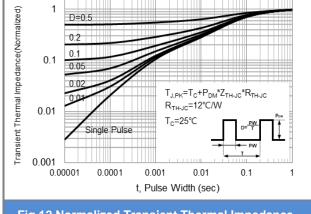
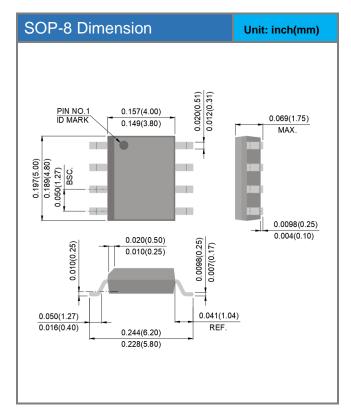
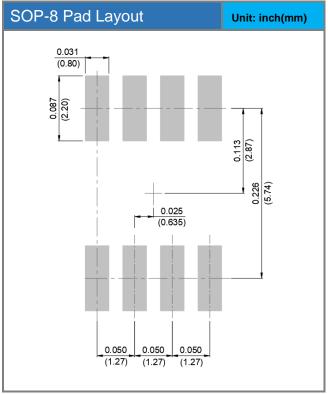



Fig.10 Capacitance vs. Drain-Source Voltage




Fig.12 Normalized Transient Thermal Impedance



Product and Packing Information

Part No.	Package Type	Package Type Packing Type	
PJL9580	SOP-8	2.5K pcs / 13" reel	L9580

Packaging Information & Mounting Pad Layout

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing or
 modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFETs category:

Click to view products by Panjit manufacturer:

Other Similar products are found below:

MCH6422-TL-E IRFD120 IRFY240C JANTX2N5237 2SJ277-DL-E 2SK2267(Q) BUK455-60A/B TK100A10N1,S4X(S MIC4420CM-TR IRFS350 VN1206L NDP4060 IPS70R2K0CEAKMA1 AON6932A 2N4352 TS19452CS RL TK31J60W5,S1VQ(O TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) JANTX2N6798 DMN1017UCP3-7 EFC2J004NUZTDG DMN1053UCP4-7 SCM040600 NTE2384 2N7000TA DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B 2N7002W-G MCAC30N06Y-TP MCQ7328-TP IPB45P03P4L11ATMA2 BXP2N20L BXP2N65D BXT330N06D TSM60NB380CP ROG RQ7L055BGTCR SLF10N65ABV2