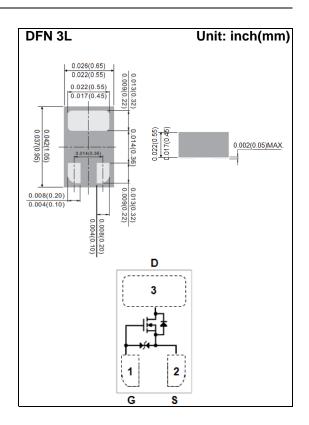


20V N-Channel Enhancement Mode MOSFET


Voltage 20 V Current 1.2 A

Features

- Low Voltage Drive (1.2V).
- Advanced Trench Process Technology
- Specially Designed for Switch Load, PWM Application, etc.
- ESD Protected
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard

Mechanical Data

- Case: DFN 3L Package
- Terminals: Solderable per MIL-STD-750, Method 2026
- Approx. Weight: 0.00004 ounces, 0.0011 grams
- Marking: 0

Maximum Ratings and Thermal Characteristics (T_A=25 °C unless otherwise noted)

PARAMETER		SYMBOL	LIMIT	UNITS	
Drain-Source Voltage		V _{DS}	20	V	
Gate-Source Voltage		V _{GS}	<u>+</u> 10	V	
Continuous Drain Current	T _A =25°C	_D	1.2		
	T _{sp} =25°C (Note 3)		2.0	A	
Pulsed Drain Current, tp≤10us		I _{DM}	4.0	Α	
Power Dissipation	T _A =25°C	P _D	900	mW	
	Derate above 25°C		7.2	mW/°C	
Operating Junction and Storage Temperature Range		T_J, T_{STG}	-55~150	°C	
Typical Thermal resistance					
- Junction to Ambient, t<10s (Note 4)		$R_{\theta JA}$	139	°C/W	

Electrical Characteristics (T_A=25 °C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS	
Static							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	20	-	-	V	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250uA$	0.3	0.65	0.9	V	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =4.5V, I _D =600mA	-	300	400	mΩ	
		V_{GS} =2.5V, I_{D} =200mA	-	350	650		
		V _{GS} =1.8V, I _D =100mA	-	400	800		
		V _{GS} =1.5V, I _D =50mA	-	500	1200		
		V _{GS} =1.2V, I _D =20mA	-	1000	3000		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =16V, V _{GS} =0V	-	-	1	uA	
Gate-Source Leakage Current	I _{GSS}	$V_{GS}=\underline{+}8V, V_{DS}=0V$	-	<u>+</u> 0.5	<u>+</u> 10	uA	
Dynamic (Note 6)							
Total Gate Charge	Q_g	V _{DS} =10V, I _D =300mA, V _{GS} =4.5V ^(Note 2)	-	1.4	-	nC	
Gate-Source Charge	Q_gs		-	0.22	-		
Gate-Drain Charge	Q_gd		-	0.21	-		
Input Capacitance	Ciss	V _{DS} =10V, V _{GS} =0V, f=1.0MHZ	-	67	-	pF	
Output Capacitance	Coss		-	19	-		
Reverse Transfer Capacitance	Crss	I=1.0IVIDZ	-	6	-		
Turn-On Delay Time	td _(on)	\/ 40\/ I 450m A	-	2.8	-	ns	
Turn-On Rise Time	tr	$V_{DD}=10V, I_{D}=150mA,$ $V_{GS}=4.0V,$ $R_{G}=10\Omega$ (Note 1,2)	-	20	-		
Turn-Off Delay Time	td _(off)		-	23	-		
Turn-Off Fall Time	tf	K _G =1022	-	23	-		
Drain-Source Diode							
Maximum Continuous Drain-Source Diode Forward Current	Is		-	-	300	mA	
Diode Forward Voltage	V_{SD}	I _S =300mA, V _{GS} =0V	-	0.87	1.3	V	

NOTES:

- 1. Pulse width<a>300us, Duty cycle<a>2%
- 2. Essentially independent of operating temperature typical characteristics.
- 3. Tsp is the temperature at the soldering point of the source lead.
- 4. Rejah is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins mounted on a 1inch FR-4 with 2oz. square pad of copper.
- 5. The maximum current rating is package limited
- 6. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTIC CURVES

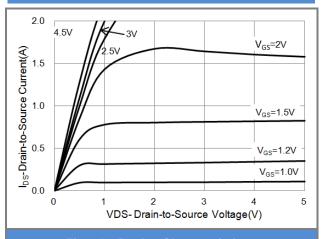
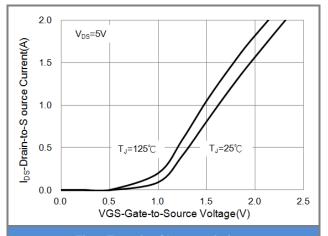



Fig.1 On-Region Characteristics

Fig.2 Transfer Characteristics

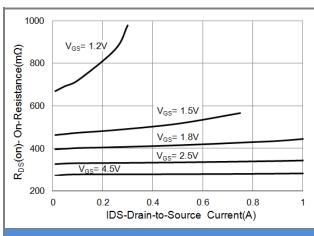


Fig.3 On-Resistance vs. Drain Current

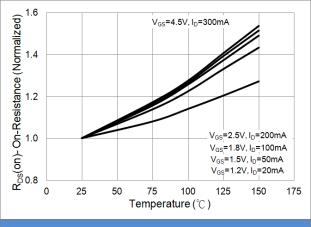
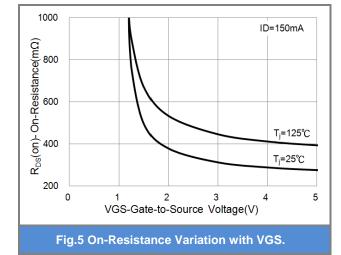
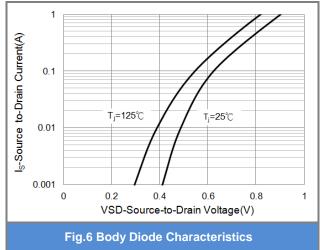
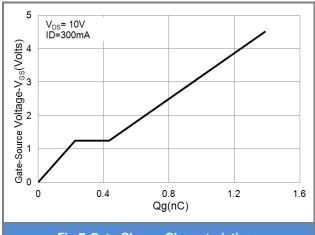




Fig.4 On-Resistance vs. Junction temperature



TYPICAL CHARACTERISTIC CURVES

Fig.7 Gate-Charge Characteristics

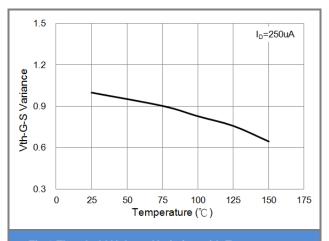


Fig.8 Threshold Voltage Variation with Temperature.

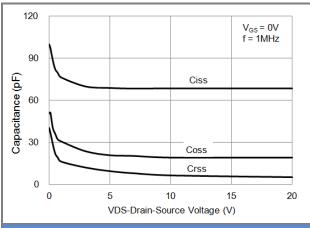
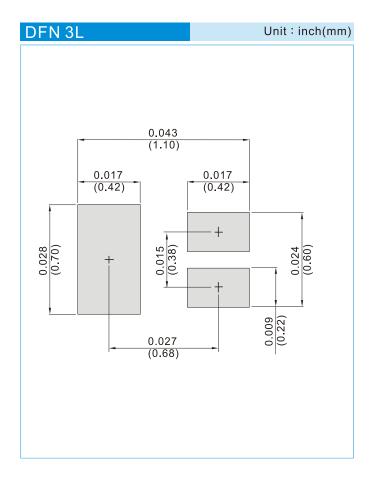


Fig.9 Capacitance vs. Drain-Source Voltage.



PART NO PACKING CODE VERSION

Part No Packing Code	Package Type	Packing Type	Marking	Version
PJQ1900_R1_00001	DFN 3L	8K pcs / 7" reel	0	Halogen free

MOUNTING PAD LAYOUT

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing or
 modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Panjit manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3