

40V N-Channel Enhancement Mode MOSFET

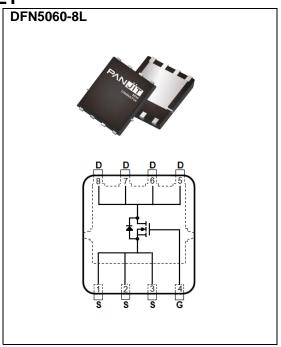
Voltage

40 V

Current

85 A

Features


- Rds(on), Vgs@10V, Id@20A<5.3m Ω
- RDS(ON), VGS@4.5V, ID@20A<7.4m Ω
- Excellent FOM
- Logic Level Drive
- AEC-Q101 qualified
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard

Mechanical Data

• Case: DFN5060-8L Package

• Terminals : Solderable per MIL-STD-750, Method 2026

• Approx. Weight: 0.08 grams

Maximum Ratings and Thermal Characteristics (T_A=25°C unless otherwise noted)

PARAMETER		SYMBOL	LIMIT	UNITS	
Drain-Source Voltage		V _{DS}	40	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current(Note 3)	T _C =25°C	l _D	85	А	
	T _C =100°C		60		
Pulsed Drain Current(Note 1)	T _C =25°C	I _{DM}	340		
Power Dissipation	T _C =25°C	Po	68	W	
	T _C =100°C		34		
Continuous Drain Current(Note 4)	T _A =25°C	I _D	18.7		
	T _A =70°C		15.6	Α	
Power Dissipation	T _A =25°C	PD	3.3	W	
	T _A =70°C		2.3		
Single Pulse Avalanche Energy ^(Note 5)		Eas	90	mJ	
Operating Junction and Storage Temperature Range		T _J ,T _{STG}	-55~175	°C	
Thermal Resistance ^(Note 4)	Junction to Case	$R_{ heta JC}$	2.2	°C/W	
	Junction to Ambient	$R_{\theta JA}$	45		

Electrical Characteristics (T_A=25°C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS	
Static	_						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA 40		-	-		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =50uA	1.1	1.7	2.3	V	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =10V, I _D =20A	-	4.2	5.3	mΩ	
		V _{GS} =4.5V, I _D =20A	-	5.7	7.4		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V, V _{GS} =0V	-	-	1	uA	
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA	
Dynamic ^(Note 6)							
Total Gate Charge	Q_g	V _{DS} =32V, I _D =20A,	-	20	-		
Gate-Source Charge	Q_{gs}		-	3.1	-	nC	
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6.4	-		
Input Capacitance	Ciss)/ OF)/)/ O)/	-	1320	-	pF	
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V,	-	250	-		
Reverse Transfer Capacitance	Crss	f=1MHz	-	30	-		
Gate resistance	Rg	f=1MHz	-	0.8	-	Ω	
Turn-On Delay Time	td _(on)	.,	-	11	-		
Turn-On Rise Time	tr	V _{DS} =32V, I _D =20A,	-	3	-		
Turn-Off Delay Time	td _(off)	$V_{GS}=10V, R_{G}=3\Omega$	-	28	-	ns	
Turn-Off Fall Time	tf	(Note 2)	-	5	-		
Drain-Source Diode						•	
Diode Forward Current	Is	T _C =25°C	-	-	85	A	
Pulsed Diode Forward Current	I _{SM}	1c=25 C	-	-	340		
Diode Forward Voltage	V _{SD}	Is=20A, V _{GS} =0V	-	0.85	1.3	V	
Reverse Recovery Time	Trr	V _{GS} =0V, I _S =20A	-	23	-	ns	
Reverse Recovery Charge	Qrr	dls/dt=100A/us	-	15	-	nC	

NOTES:

- Pulse width≤100us, Duty cycle≤2%.
- 2. Essentially independent of operating temperature typical characteristics.
- 3. Chip capability with an R_{eJC}=2.2°C/W.
- 4. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Mounted on a 1 inch² with 2oz.square pad of copper.
- 5. The test condition is L=0.5mH, I_{AS}=19A, V_{DD}=25V, V_{GS}=10V, Starting T_J=25°C.
- 6. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTIC CURVES

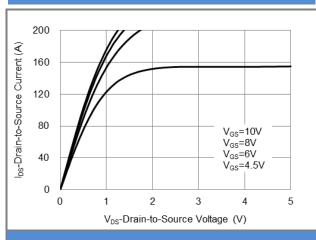


Fig.1 On-Region Characteristics

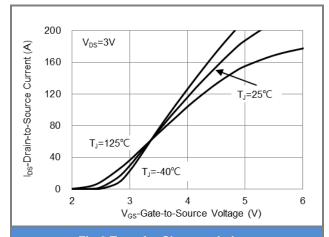


Fig.2 Transfer Characteristics

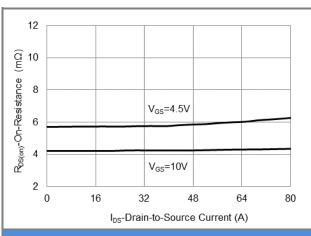


Fig.3 On-Resistance vs. Drain Current

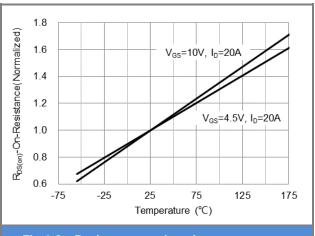
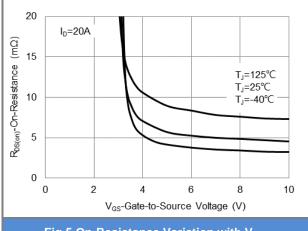
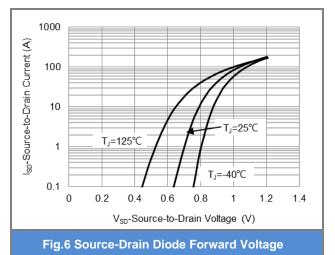




Fig.4 On-Resistance vs. Junction temperature

TYPICAL CHARACTERISTIC CURVES

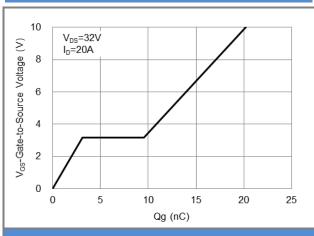


Fig.7 Gate-Charge Characteristics

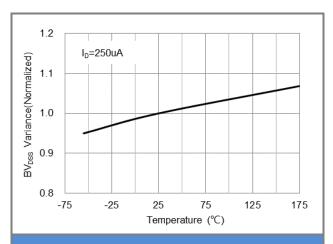


Fig.8 Breakdown Voltage Variation vs. Temperature

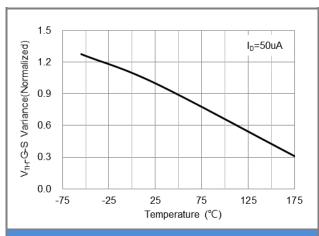


Fig.9 Threshold Voltage Variation with Temperature

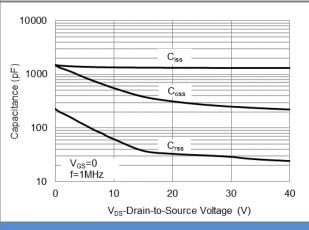


Fig.10 Capacitance vs. Drain-Source Voltage

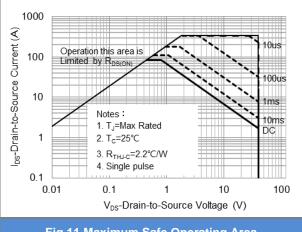


Fig.11 Maximum Safe Operating Area

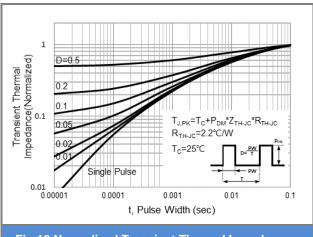
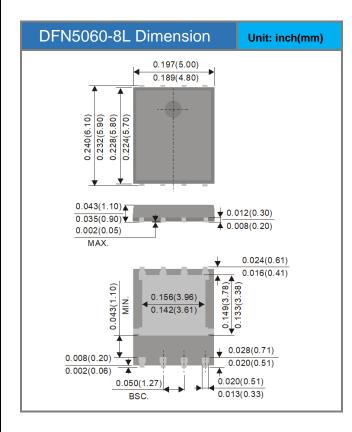
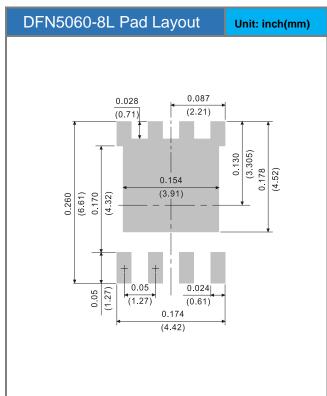


Fig.12 Normalized Transient Thermal Impedance





Product and Packing Information

Part No.	Package Type	Packing Type	Marking	
PJQ5546-AU	DFN5060-8L	3K pcs / 13" reel	Q5546	

Packaging Information & Mounting Pad Layout

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing or
 modification.
- The products shown herein are not designed and authorized for equipments relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Panjit manufacturer:

Other Similar products are found below:

1.5KE150A_AY_10001 1.5KE200A_AY_10001 1.5KE200CA_AY_10001 1.5KE33A_AY_10001 1.5KE75A_AY_10001 1.5SMC27CA-AU_R1_000A1 1.5SMC36A_R1_00001 1.5SMC36CA_R1_00001 1.5SMC39CA_R1_00001 1.5SMC82CA_R1_00001 1.5SMC39CA_R1_00001 1.5SMC39CA