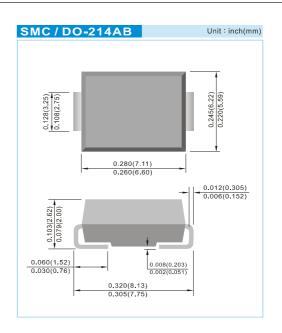


SURFACE MOUNT RECTIFIER

VOLTAGE 50~1000 Volt CURRENT 5 Ampere

FEATURES

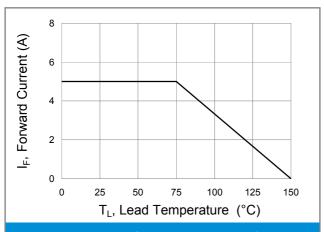

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- For surface mounted applications in order to optimize board space
- · Easy pick and place
- · Glass passivated junction
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard
- · AEC-Q101 qualified

MECHANICAL DATA

- Case: JEDEC SMC / DO-214AB molded plastic
- Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
- · Polarity: Color band denotes cathode end
- Standard packaging: 16mm tape (EIA-481)
- · Weight: 0.0082 ounces, 0.23 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase , half wave ,60Hz, resistive or inductive load. For capacitive load , derate current by 20%.


SYMBOL	S5A-AU	S5B-AU	S5D-AU	S5G-AU	S5J-AU	S5M-AU	UNITS
V _{RRM}	50	100	200	400	600	1000	V
V _{RMS}	35	70	140	280	420	700	٧
V _{DC}	50	100	200	400	600	1000	V
I _{F(AV)}	5						А
I _{FSM}	275						А
l²t	313					A ² sec	
V _F	1.1					٧	
I _R	10 250					μA	
CJ			8	30		46	pF
R _{eja} R _{ejl}	75 10					°C / W	
T_J, T_{STG}	-55 to +150				°C		
	V _{RRM} V _{RMS} V _{DC} I _{F(AV)} I2t V _F R _{BJA} R _{BJL}	V _{RRM} 50 V _{RMS} 35 V _{DC} 50 I _{F(AV)} I _{FSM} I2t V _F I _R C _J R _{BJA} R _{BJL}	V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 I _{F(AV)} I _{FSM} I ² t V _F I _R C _J R _{BJA} R _{BJL}	V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 I _{FAM} 2 I ² t 3 V _F 1 I _R 2 C _J 8 R _{BJA} R _{BJL} 7 I 1	V _{RRM} 50 100 200 400 V _{RMS} 35 70 140 280 V _{DC} 50 100 200 400 I _{FAM} 275 I2t 313 V _F 1.1 I _R 10 250 C _J 80 R _{BJA} R _{BJL} 75 10	V _{RRM} 50 100 200 400 600 V _{RMS} 35 70 140 280 420 V _{DC} 50 100 200 400 600 I _{FSM} 275 12t 313 V _F 1.1 I _R 250 C _J 80 R _{BJA} R _{BJL} 75 10	V _{RRM} 50 100 200 400 600 1000 V _{RMS} 35 70 140 280 420 700 V _{DC} 50 100 200 400 600 1000 I _{FSM} 275 I2t 313 V _F 1.1 I _R 250 C _J 80 46 R _{BJA} R _{BJL} 75 10

NOTES

- 1.Measured at 1 MHZ and applied Vr=4 volts.
- 2.8mm² (0.013mm thick)land areas.

Fig.1 Forward Current Derating Curve

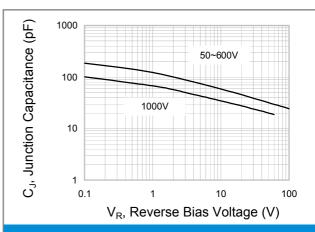


Fig.2 Typical Junction Capacitance

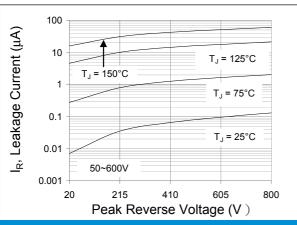


Fig.3 Typical Reverse Characteristics

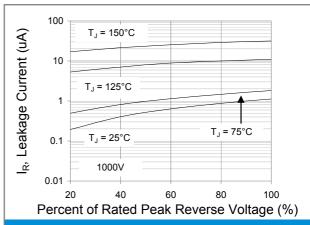
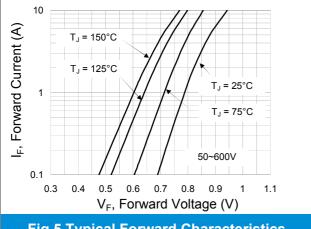
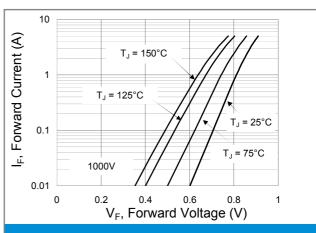
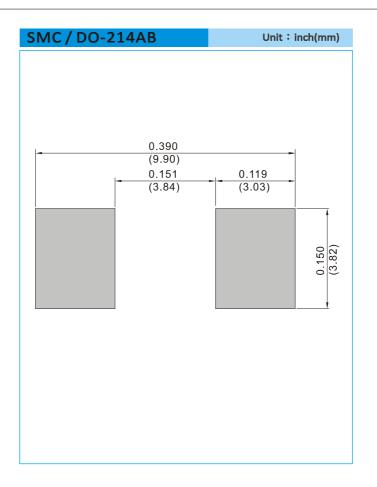




Fig.4 Typical Reverse Characteristics


Fig.6 Typical Forward Characteristics

PAGE . 2 May 7,2018-REV.08

MOUNTING PAD LAYOUT

ORDER INFORMATION

· Packing information

T/R - 3K per 13" plastic Reel

T/R - 0.8K per 7" plastic Reel

Part No_packing code_Version

S5A-AU_R1_000A1 S5A-AU_R2_000A1

For example :

Packing Code XX				Version Code XXXXX				
Packing type	1 st Code	Packing size code	2 nd Code	HF or RoHS	1 st Code	2 nd ~5 th Code		
Tape and Ammunition Box (T/B)	Α	N/A	0	HF	0	serial number		
Tape and Reel (T/R)	R	7"	1	RoHS	1	serial number		
Bulk Packing (B/P)	В	13"	2					
Tube Packing (T/P)	Т	26mm	X					
Tape and Reel (Right Oriented) (TRR)	S	52mm	Υ					
Tape and Reel (Left Oriented) (TRL)	L	PANASERT T/B CATHODE UP (PBCU)	U					
FORMING	F	PANASERT T/B CATHODE DOWN (PBCD)	D					

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties
 of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation.
 Customers are responsible in comprehending the suitable use in particular applications.
 Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Panjit manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306
70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF
85HFR60 40HFR60 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T SKN300/16 SKN 5/08 TSD3G SET130312 MSE07PBHM3/89A UES1106
60S8-TP NTE6010 JANTX1N5196 SCHS15000 BYV32-200M D5FE60-5063 JANS1N6621US