Product Specification

PE4239

SPDT UltraCMOS ${ }^{\circledR}$ RF Switch

Product Description

The PE4239 UltraCMOS ${ }^{\circledR}$ RF switch is designed to cover a broad range of applications from DC through 3.0 GHz. This reflective switch integrates on-board CMOS control logic with a low voltage CMOS-compatible control interface, and can be controlled using either single-pin or complementary control inputs. Using a nominal +3 V power supply voltage, a typical input 1 dB compression point of +27 dBm can be achieved.

The PE4239 UltraCMOS RF switch is manufactured on Peregrine's UltraCMOS process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

Features

- Single-pin or complementary CMOS logic control inputs
- +3.0V power supply needed for singlepin control mode
- Low insertion loss: 0.7 dB at 1.0 GHz , 0.9 dB at 2.0 GHz
- Isolation of 32 dB at $1.0 \mathrm{GHz}, 23 \mathrm{~dB}$ at 2.0 GHz
- Typical input 1 dB compression point of +27 dBm
- Ultra-small 6-lead SC-70 package

Figure 2. Package Type SC-70
6-lead SC-70

Table 1. Electrical Specifications @+25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

Parameter	Conditions	Minimum	Typical	Maximum	Units
Operation Frequency ${ }^{1}$		DC		3000	MHz
Insertion Loss	$\begin{aligned} & 1000 \mathrm{MHz} \\ & 2000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 1.05 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	$\begin{aligned} & 1000 \mathrm{MHz} \\ & 2000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 30 \\ & 21 \end{aligned}$	$\begin{aligned} & 32 \\ & 23 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss	$\begin{aligned} & 1000 \mathrm{MHz} \\ & 2000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
'ON' Switching Time	50% CTRL to 0.1 dB of final value, 1 GHz		300		ns
'OFF' Switching Time	50% CTRL to 25 dB isolation, 1 GHz		200		ns
Video Feedthrough ${ }^{2}$			15		$\mathrm{mV}_{\mathrm{pp}}$
Input 1 dB Compression	2000 MHz	26	27		dBm
Input IP3	2000 MHz , 14 dBm input power	43	45		dBm

Notes: 1 . Device linearity will begin to degrade below 10 MHz .
2. The DC transient at the output of any port of the switch when the control voltage is switched from Low to High or High to Low in a 50Ω test set-up, measured with 1 ns risetime pulses and 500 MHz bandwidth.

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	RF1	RF1 port (Note 1)
2	GND	Ground connection. Traces should be physically short and connected to ground plane for best performance.
3	RF2	RF2 port (Note 1)
4	CTRL	Switch control input, CMOS logic level.
5	RFC	Common RF port for switch (Note 1)
6	CTRL or V	This pin supports two interface options: Single-pin control mode. A nominal 3V supply connection is required. Complementary-pin control mode. A complementary CMOS control signal to CTRL is supplied to this pin. By- passing on this pin is not required in this mode.

Note 1: All RF pins must be DC blocked with an external series capacitor or held at $0 \mathrm{~V}_{\mathrm{DC}}$.

Table 3. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Power supply voltage	-0.3	4.0	V
$\mathrm{~V}_{\mathrm{I}}$	Voltage on any input	-0.3	$\mathrm{V}_{\mathrm{DD}}+$ 0.3	V
$\mathrm{~T}_{\mathrm{ST}}$	Storage temperature range	-65	150	${ }^{\circ} \mathrm{C}$
T_{OP}	Operating temperature range	-55	85	${ }^{\circ} \mathrm{C}$
P_{IN}	Input power (50ת)		30	dBm
$\mathrm{V}_{\text {ESD }}$	ESD voltage (Human Body Model)		1500	V

Table 4. DC Electrical Specifications

Parameter	Min	Typ	Max	Units
$\begin{array}{l}\text { VDD Power Supply } \\ \text { Voltage }\end{array}$	2.7	3.0	3.3	V
$\begin{array}{l}\text { I } \\ \text { ID }\end{array}$				
$\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{CTRL}}=3 \mathrm{~V}\right)$				

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Table 5. Single-pin Control Logic Truth Table

Control Voltages	Signal Path
Pin $6\left(\overline{\mathrm{CTRL}}\right.$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)=\mathrm{V}_{\mathrm{DD}}$ Pin $4(\mathrm{CTRL})=$ High	RFC to RF1
Pin $6\left(\overline{\mathrm{CTRL}}\right.$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)=\mathrm{V}_{\mathrm{DD}}$ Pin $4(\mathrm{CTRL})=$ Low	RFC to RF2

Table 6. Complementary-pin Control Logic Truth Table

Control Voltages	Signal Path
Pin $6(\overline{\mathrm{CTRL}}$ or V PD Pin $4(\mathrm{CTRL})=$ Low High	RFC to RF1
Pin $6(\overline{\mathrm{CTRL}}$ or V Pin $4(\mathrm{CTRL})=$ High $=$ Low	RFC to RF2

Control Logic Input

The PE4239 is a versatile RF switch that supports two operating control modes; single-pin control mode and complementary-pin control mode.

Single-pin control mode enables the switch to operate with a single control pin (pin 4) supporting a +3 V CMOS logic input, and requires a dedicated +3 V power supply connection on pin $6\left(\mathrm{~V}_{\mathrm{DD}}\right)$. This mode of operation reduces the number of control lines required and simplifies the switch control interface typically derived from a CMOS μ Processor I/O port.

Complementary-pin control mode allows the switch to operate using complementary control pins CTRL and CTRL (pins $4 \& 6$), that can be directly driven by +3 V CMOS logic or a suitable μ Processor I/O port. This enables the PE4239 to be used as a potential alternate source for SPDT RF switch products used in positive control voltage mode and operating within the PE4239 operating limits.

Evaluation Kit

The SPDT switch Evaluation Kit board was designed to ease customer evaluation of the PE4239 SPDT switch. The RF common port is connected through a 50Ω transmission line to the top left SMA connector, J1. Port 1 and Port 2 are connected through 50Ω transmission lines to the top two SMA connectors on the right side of the board, J3 and J2, respectively. A through transmission line connects SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a two metal layer FR4 material with a total thickness of 0.031 ". The bottom layer provides ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of $0.0476^{\prime \prime}$, trace gaps of 0.030 ", dielectric thickness of 0.028 ", metal thickness of $0.0021^{\prime \prime}$ and ε_{r} of 4.4.

J6 provides a means for controlling DC and digital inputs to the device. Starting from the lower left pin, the second pin to the right (J6-3) is connected to the device V1 or CTRL input. The fourth pin to the right (J6-7) is connected to the device V2 or $\overline{C T R L} / V_{D D}$ input.

Typical Performance Data @ $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Unless otherwise noted)

Figure 6. Insertion Loss - RFC to RF1

Figure 8. Insertion Loss - RFC to RF2

Figure 7. Input 1 dB Compression Point \& IIP3 (Typical performance @ $25^{\circ} \mathrm{C}$)

Figure 9. Isolation - RFC to RF1

Typical Performance Data @ $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Unless otherwise noted)

Figure 10. Isolation - RFC to RF2

Figure 12. Return Loss - RFC to RF1, RF2

Figure 11. Isolation - RF1 to RF2, RF2 to RF1

Figure 13. Return Loss - RF1, RF2

Figure 14. Package Drawing
6-lead SC-70

Figure 15. Tape and Reel Specifications

Notes:

1. 10 sprocket hole pitch cumulative tolerance $\pm .02$.
2. Camber not to exceed 1 mm in 100 mm .
3. Material: Black Conductive Advantek Polystyrene.
4. Ao and Bo measured an a plane 0.3 mm above the bottom of the pocket
5. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.
$A o=2.25 \mathrm{~mm}$
$\mathrm{Bo}_{\mathrm{o}}=2.4 \mathrm{~mm}$
$K o=1.2 \mathrm{~mm}$

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
$4239-01$	239	PE4239-06SC70-7680A	6 -lead SC-70	7680 units / Canister
$4239-02$	239	PE4239-06SC70-3000C	6-lead SC-70	3000 units / T\&R
$4239-00$	PE4239-EK	PE4239-06SC70-EK	Evaluation Kit	$1 /$ Box
$4239-51$	239	PE4239G-06SC70-7680A	Green 6-lead SC-70	7680 units / Canister
$4239-52$	239	PE4239G-06SC70-3000C	Green 6-lead SC-70	3000 units / T\&R

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-004100-
11930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1
BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2
MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G MASW-008955-TR3000 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS2353-2-SM TGS4304 UPG2162T5N-A CG2415M6-
C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR
MASWSS0181TR-3000 MASW-007588-TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G
MASWSS0202TR-3000

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).
 The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

