Product Specification

PE4245

Product Description

The PE4245 RF Switch is designed to cover a broad range of applications from near DC to 4000 MHz . This switch integrates on-board CMOS control logic with a low voltage CMOS compatible control input. Using a +3-volt nominal power supply voltage, a 1 dB compression point of +27 dBm can be achieved. The PE4245 also exhibits excellent isolation of better than 42 dB at 1000 MHz and is offered in a small 3×3 mm DFN package.

The PE4245 is manufactured on Peregrine's UltraCMOS ${ }^{\text {TM }}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

SPDT UltraCMOS ${ }^{\text {TM }}$ RF Switch

 DC - 4000 MHz
Features

Single 3.0 V Power Supply
Low insertion loss: 0.6 dB at 1000 MHz ,
0.7 dB at 2000 MHz

High isolation of 42 dB at 1000 MHz ,
32 dB at 2000 MHz
Typical 1 dB compression of +27 dBm
Single-pin CMOS logic control
Available in a 6-lead DFN package

Figure 2. Package Type
6-lead DFN

Table 1. Electrical Specifications $@+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{3} \mathbf{V}(\mathrm{ZS}=\mathrm{ZL}=50 \Omega)$

Parameter	Conditions	Minimum	Typical	Maximum	Units
Operation Frequency ${ }^{1}$		DC		4000	MHz
Insertion Loss	1000 MHz		0.6	0.75	dB
2000 MHz		0.7	0.85	dB	
Isolation - RFC to RF1/RF2	1000 MHz	2000 MHz	39	42	
Isolation - RF1 to RF2	1000 MHz				
2000 MHz	30	32			
Return Loss	1000 MHz	27	36	dB	
'ON' Switching Time	CTRL to 0.1 dB final value, 2 GHz	21	23	dB	
'OFF' Switching Time	CTRL to 25 dB isolation, 2 GHz		200	dB	
Video Feedthrough ${ }^{2}$			90	ns	
Input 1 dB Compression	2000 MHz		15	ns	
Input IP3	26	27	mV		

Notes: 1. Device linearity will begin to degrade below 10 MHz .
2. The DC transient at the output of any port of the switch when the control voltage is switched from Low to High or High to Low in a 50Ω test set-up, measured with 1 ns risetime pulses and 500 MHz bandwidth.

Figure 3. Pin Configuration

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	RF2	RF2 port (Note 1)
2	GND	Ground Connection. Traces should be physically short and connected to the ground plane. This pin is connected to the exposed solder pad that also must be soldered to the ground plane for best performance.
3	RF1	RF1 port (Note 1)
4	VDD	Nominal 3 V supply connection.
5	CTRL	CMOS logic level: High = RFC to RF1 signal path Low = RFC to RF2 signal path
6	RFC	Common RF port for switch (Note 1)

Notes: 1. All RF pins must be DC blocked with an external series capacitor or held at $0 \mathrm{~V}_{\mathrm{DC}}$.

Table 3. Operating Ranges

Parameter	Min	Typ	Max	Units
V_{DD} Power Supply Voltage	2.7	3.0	3.3	V
I_{DD} Power Supply Current $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}=3 \mathrm{~V}$		250	500	nA
T Tap Operating temperature	-40		85	${ }^{\circ} \mathrm{C}$
Control Voltage High	0.7 x V_{DD}			V
Control Voltage Low			0.3 x V_{DD}	V

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the
PE4245 in the 6-lead 3x3 DFN package is MSL1.

Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Power supply voltage	-0.3	4.0	V
$\mathrm{~V}_{\mathrm{I}}$	Voltage on any input	-0.3	$\mathrm{V}_{\mathrm{DD}}+$ 0.3	V
$\mathrm{~T}_{\mathrm{ST}}$	Storage temperature range	-65	150	${ }^{\circ} \mathrm{C}$
P_{IN}	Input power (50 $)$		30	dBm
$\mathrm{V}_{\text {ESD }}$	ESD voltage (Human Body Model)		1500	V

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Table 5. Control Logic Truth Table

Control Voltage	Signal Path
CTRL = CMOS High	RFC to RF1
CTRL = CMOS Low	RFC to RF2

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\text {TM }}$ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 4.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\text {™ }}$ devices are immune to latch-up.

Typical Performance Data @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)

Figure 4. Insertion Loss - RFC to RF1 $\mathrm{T}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Figure 6. Insertion Loss - RFC to RF2 $\mathrm{T}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Figure 5. Input 1dB Compression Point and IIP3

Figure 7. Isolation - RFC to RF1

Typical Performance Data @ $25^{\circ} \mathrm{C}$

Figure 8. Isolation - RFC to RF2

Figure 10. Return Loss - RFC to RF1, RF2

Figure 9. Isolation - RF1 to RF2, RF2 to RF1

Figure 11. Return Loss - RF1, RF2

Evaluation Kit

The SPDT Switch Evaluation Kit board was designed to ease customer evaluation of the PE4245 SPDT switch. The RF common port is connected through a 50Ω transmission line to the top left SMA connector, J1. Port 1 and Port 2 are connected through 50Ω transmission lines to the top two SMA connectors on the right side of the board, J2 and J3. A through transmission line connects SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a two metal layer FR4 material with a total thickness of 0.031 ". The bottom layer provides ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 0.0476 ", trace gaps of 0.030 ", dielectric thickness of 0.028 ", metal thickness of 0.0021" and ε_{r} of 4.4.

J6 provides a means for controlling DC and digital inputs to the device. Starting from the lower left pin, the second pin to the right (J6-3) is connected to the device CTRL input. The fourth pin to the right (J6-7) is connected to the device V_{DD} input.

Figure 12. Evaluation Board Layouts
Peregrine Specification 101/0085

Figure 13. Evaluation Board Schematic
Peregrine Specification 102/0110

Figure 14. Package Drawing
6-lead DFN

NपTE:

1) TSLP AND SLP SHARE THE SAME EXPDSE DUTLINE BUT WITH DIFFERENT THICKNESS:

		TSLP	SLP
$\star 4$	MAX.	0.800	0.900
	NQM.	0.750	0.850
	MIN.	0.700	0.800

NOTE: The exposed solder pad (on the bottom of the package) is electrically connected to pin 2 (fused.)

Figure 15. Marking Specifications

YYWW = Date Code (last two digits of year and work week)
ZZZZZ = Last five digits of Lot Number

Figure 16. Tape and Reel Specifications
6-lead DFN
$0.30 .05 \rightarrow$

Table 6. Dimensions

Dimension	DFN 3x3 mm
Ao	3.23 ± 0.1
Bo	3.17 ± 0.1
Ko	1.37 ± 0.1
P	4 ± 0.1
W	$8+0.3,-0.1$
T	0.254 ± 0.02
R7 Quantity	3000
R13 Quantity	N.A.

Device Orientation in Tape

Note: R7 = 7 inch Lock Reel, R13 = 13 inch Lock Reel

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
$4245-51$	4245	PE4245G-06DFN 3x3mm-12800F	Green 6-lead 3x3 mm DFN	Tape or loose
$4245-52$	4245	PE4245G-06DFN 3x3mm-3000C	Green 6-lead 3x3 mm DFN	3000 units / T\&R
$4245-00$	PE4245-EK	PE4245-06DFN 3x3mm-EK	Evaluation Kit	$1 /$ Box

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive
San Diego, CA 92121
Tel: 858-731-9400
Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine
13-15 rue des Quatre Vents
F-92380 Garches, France
Tel: +33-1-4741-9173
Fax : +33-1-4741-9173

High-Reliability and Defense Products

Americas

San Diego, CA, USA
Phone: 858-731-9475
Fax: 848-731-9499
Europe/Asia-Pacific
Aix-En-Provence Cedex 3, France
Phone: +33-4-4239-3361
Fax: +33-4-4239-7227

Peregrine Semiconductor, Asia Pacific (APAC)
Shanghai, 200040, P.R. China
Tel: +86-21-5836-8276
Fax: +86-21-5836-7652
Peregrine Semiconductor, Korea
\#B-2607, Kolon Tripolis, 210
Geumgok-dong, Bundang-gu, Seongnam-si
Gyeonggi-do, 463-943 South Korea
Tel: +82-31-728-3939
Fax: +82-31-728-3940
Peregrine Semiconductor K.K., Japan
Teikoku Hotel Tower 10B-6
1-1-1 Uchisaiwai-cho, Chiyoda-ku
Tokyo 100-0011 Japan
Tel: +81-3-3502-5211
Fax: +81-3-3502-5213

For a list of representatives in your area, please refer to our Web site at: www.psemi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a DCN (Document Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-004100-
11930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1
BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2
MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G MASW-008955-TR3000 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS2353-2-SM TGS4304 UPG2162T5N-A CG2415M6-
C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR
MASWSS0181TR-3000 MASW-007588-TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G
MASWSS0202TR-3000

