Product Description

The PE4246 RF Switch is designed to cover a broad range of applications from 1 to 5000 MHz . It is non-reflective at both RF1 and RF2 ports. This SPST switch integrates a single-pin CMOS control interface, and provides low insertion loss while operating with extremely low bias from a single +3 -volt supply. In a typical application, the high isolation PE4246 can replace multiple RF switches of lesser isolation performance. It is offered in a small $3 x 3 \mathrm{~mm}$ DFN package.

The PE4246 is manufactured on Peregrine's UltraCMOS ${ }^{\text {TM }}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram
Peregrine Specification 71/0008

CTRL

RF2

Product Specification

PE4246

Absorptive SPST UltraCMOS ${ }^{\text {TM }}$ RF Switch: 1-5000 MHz

Features

- Non-reflective 50 -ohm RF switch
- 50 -ohm (0.25 watt) terminations
- High isolation: 55 dB at 1000 MHz , 48 dB at 3000 MHz
- Low insertion loss. 0.8 dB at 1000 MHz , 0.9 dB ot 3000 MH
- High linearity +33 dB input 1 dB oompression point
- CMOS/TT single-pin control
- Single 3 -voltsupply operation
- Extremely How bias: $33 \mu \mathrm{~A} @ 3 \mathrm{~V}$

Availabie in a 6-lead DFN package
Figure 2. Package Type
6-lead DFN

Table 1. Electrical Specifications $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}(\mathrm{ZS}=\mathrm{ZL}=50 \Omega)$

Parameter	- Condition	Minimum	Typical	Maximum	Units
Operation Frequency ${ }^{1}$	\cdots -	1		5000	MHz
Operating Power	CTRL $=1 / \mathrm{CTRL}=0$			30/24	dBm
Insertion Loss	$\begin{aligned} & 1-2000 \mathrm{MHz} \\ & 2000-3000 \mathrm{MHz} \\ & 3000-4000 \mathrm{MHz} \\ & 4000-5000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.3 \\ & 1.8 \end{aligned}$	dB dB dB dB
Isolation	$\begin{aligned} & 1-2000 \mathrm{MHz} \\ & 2000-3000 \mathrm{MHz} \\ & 3000-4000 \mathrm{MHz} \\ & 4000-5000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 49 \\ & 45 \\ & 43 \\ & 40 \end{aligned}$	$\begin{aligned} & 55 \\ & 48 \\ & 46 \\ & 44 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss	$1-5000 \mathrm{MHz}$	11	20		dB
Input 1 dB Compression ${ }^{3}$	$1-5000 \mathrm{MHz}$	30	33		dBm
Input IP3	1-5000 MHz	50			dBm
Video Feedthrough ${ }^{2}$				15	$\mathrm{mV}_{\mathrm{pp}}$
Switching Time			2		$\mu \mathrm{s}$

Notes: 1. Device linearity will begin to degrade below 1 MHz .
2. The DC transient at the output of the switch when the control voltage is switched from Low to High or High to Low in a 50Ω test set-up, measured with 1 ns risetime pulses and 500 MHz bandwidth.
3. Note Absolute Maximum ratings in Table 3.

Figure 3. Pin Configuration

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	$V_{D D}$	Nominal 3 V supply connection. ${ }^{1}$
2	GND	Ground connection. ${ }^{3}$
3	RF1	RF port. ${ }^{2}$
4	CTRL	CMOS or TTL logic level: High = RF1 to RF2 signal path Low = RF1 isolated from RF2
5	GND	Ground connection. ${ }^{3}$
6	RF2	RF port. ${ }^{2}$
Notes: 1. A bypass capacitor should be placed as close as possible to the pin. 2. Both RF pins must be DC blocked by an external capacitor or held at $0 \mathrm{~V}_{\mathrm{Dc}}$. 3. The exposed pad must be soldered to the ground plane for proper switch performance.		

Table 3. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	Power supply voltage	-0.3	4.0	V
$\mathrm{~V}_{\mathrm{I}}$	Voltage on CTRLLipput	-0.3	5.5	V
$\mathrm{~T}_{\mathrm{ST}}$	Storage temperature	-65	150	${ }^{\circ} \mathrm{C}$
P_{IN}	mput power (50Ω), CTRL-1/CTRL=0		$33 / 24$	dBm
$\mathrm{V}_{\text {ESD }}$	ESD voltage (Human Body Model)		200	V

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE4246 in the 6 -lead 3×3 DFN package is MSL1.

Device Description

The PE4246 high-isolation SPST RF Switch is designed to support a variety of applications where high isolation performance is demanded and a non-reflective input and output is desired. This switch is able to replace multiple lesser performing switches in a very small $3 \times 3 \mathrm{~mm}$ DFN footprint.

Table 4. Operating Rânges

Parameter	Min		Max	Unit
$V_{\text {D }}$ Power Supply	2.7	3.0	3.3	V
IDD Power Supply Ourrent $\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=3 \mathrm{~V}\right)$		33	40	$\mu \mathrm{A}$
T_{OP} Operating temperature	-40		85	${ }^{\circ} \mathrm{C}$
Control Voltage High	$0.7 \mathrm{x} \mathrm{V}_{\mathrm{DD}}$		5	V
Control Voltag	0		$0.3 \times V_{\text {DD }}$	V

Table 5. Control Logic Truth Table

Control Voltage	Signal Path
C CTRL = CMOS or TTL High	RF1 to RF2
CTRL = CMOS or TTL Low	RF1 isolated from RF2

Control Logic

The control logic input pin (CTRL) is typically driven by a 3-volt CMOS logic level signal, and has a threshold of 50% of V_{DD}. For flexibility to support systems that have 5 -volt control logic drivers, the control logic input has been designed to handle a 5 -volt logic HIGH signal. (A minimal current will be sourced out of the $V_{D D}$ pin when the control logic input voltage level exceeds V_{DD}.)

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\text {TM }}$ device, observe the same precautions that you would use with other ESDsensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 3.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\text {TM }}$ devices are immune to latch-up.

Typical Performance Data @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)

Figure 4. Insertion Loss
$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Figure 5. Input 1dB Compression Point and IIP3

Figure 6. Isolation

Typical Performance Data @ +25 ${ }^{\circ} \mathrm{C}$

Figure 7. RF1 Return Loss $(C T R L=$ High $)$

Figure 9. RF1 Return Loss (CTRL = Low)

Figure 8. RF2 Return Loss (CTRL = High)

Figure 10. RF2 Return Loss (CTRL = Low)

Evaluation Kit

The SPST Switch Evaluation Kit board was designed to ease customer evaluation of the PE4246 SPST switch. The RF1 port is connected through a 50Ω transmission line to the top left SMA connector, J1. The RF2 port is connected through a 50Ω transmission line to the top right SMA connector, J2. A through transmission line connects SMA connectors J3 and J4. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a two metal layer FR4 material with a total thickness of 0.031 ". The bottom layer provides ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide model with trace width of 0.0476 ", trace gaps of 0.030 ", dielectric thickness of 0.028 ", metal thickness of 0.0021 " and εR of 4.3. Note that the predominate mode for these transmission lines is coplanar waveguide with a ground plane.

J5 and J6 provide a means for controlling DC and digital inputs to the device. J6-1 is connected to the device V_{DD} input. $\mathrm{J} 5-1$ is connected to the device CTRL input. J5-2 and J6-2 are GND connections. A decoupling capacitor (100 pF) is provided on both CTRL and vo traces. It is the responsibility of the customer to determine proper supply decoupling for their design application. Removing these components trom the evaluation board has not been shown to degrade RF performance

Figure 11. Evaluation Board Layouts
Peregrine Specification 101/0102

Figure 12. Evaluation Board Schematic
Peregrine Specification 102/0134

Figure 13. Package Drawing

6 -lead DFN

NOTE: The exposed solder pad (Onthe bottom of the package) is not electrically connected to any other pin (isolated).

Figure 14. Marking Specification

YYWW = Date Code (last two digits of year and work week)
ZZZZZ = Last five digits of Lot Number

Figure 15. Tape and Reel Specifications
6 -lead DFN

Table 6. Dimensions

Dimension	DFN 3x3 mm
Ao	3.23 ± 0.1
Bo	3.17 ± 0.1
Ko	1.37 ± 0.1
P	4 ± 0.1
W	$8+0.3 .-0.1$
T	0.254 ± 0.02
R7 Quantity	3000
R13 Quantity	N.A.

Device Orientation in Tape

NTIES:

2. [AMER IN CDMPLINLE NITH EIA 48I
 AS TAE PISITIDN F PICKET, NTI PICKET HEE

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
$4246-51$	4246	PE4246G-06DFN 3x3mm-12800F	Green 6-lead 3×3 mm DFN	Tape or loose
$4246-52$	4246	PE4246G-06DFN 3x3mm-3000C	Green 6-lead 3x3 mm DFN	3000 units $/$ T\&R
$4246-00$	PE4246-EK	PE4246-06DFN 3x3mm-EK	Evaluation Kit	$1 /$ Box

Sales Offices

The Americas

Peregrine Semiconductor Corporation
9380 Carroll Park Drive
San Diego, CA 92121
Tel: 858-731-9400
Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine
13-15 rue des Quatre Vents
F-92380 Garches, France
Tel: +33-1-4741-9173
Fax : +33-1-4741-9173

High-Reliability and Defense Products

Americas
San Diego, CA, USA
Phone: 858-731-9475
Fax: 848-731-9499
Europe/Asia-Pacific
Aix-En-Provence Cedex 3, France
Phone: +33-4-4239-3361
Fax: +33-4-4239-7227

Peregrine Semiconductor, Asia Pacific (APAC)

Shanghai, 200040, P.R. China
Tel: +86-21-5836-8276
Fax: +86-21-5836-7652
Peregrine Semiconductor, Korea
\#B-2607, Kolon Tripolis, 210
Geumgok-dong, Bundang
Gyeonggi-do, 463-943 South Korea
Tel: +82-31-728-3939
Fax: +82-31-728-3940
Peregrine Semiconductor K.K., Japan
Teikoku Hotel Tower 10B-6
1-1-1 Uchisaiwai-cho, Chlyoda-ku
Tokyo 100-0011 Japan
Tel: +81-3-3502-5211

For a list of representatives in your area, please refer to our Web site at: www.psemi.com

Data Sheet Identification

Advance Information

The product is in a formative or designs stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-004100-
11930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1
BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2
MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G MASW-008955-TR3000 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS2353-2-SM TGS4304 UPG2162T5N-A CG2415M6-
C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR
MASWSS0181TR-3000 MASW-007588-TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G
MASWSS0202TR-3000

