Product Specification

PE42551

Product Description

The PE42551 RF Switch is designed to support the requirements of the test equipment and ATE market. This broadband general purpose switch maintains excellent RF performance and linearity from 9 kHz through 6000 MHz . The PE42551 integrates on-board CMOS control logic driven by a single-pin, low voltage CMOS control input. It also has a logic select pin which enables changing the logic definition of the control pin. Additional features include a novel user defined logic table, enabled by the on-board CMOS circuitry. The PE42551 also exhibits outstanding isolation that approaches 21 dB at 6000 MHz and is offered in a small $4 \times 4 \times 0.85 \mathrm{~mm}$ QFN package.

The PE42551 is manufactured on Peregrine's UltraCMOS ${ }^{\circledR}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventionałCMOS.

Figure 1. Functional Diagram Peregrine Specification 71-0065

Table 1. Electrical Specifications @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

SPDT UltraCMOS ${ }^{\circledR}$ RF Switch 9 kHz - 6000 MHz

Features

- HaRPTM-Technology -Enhanced
- Eliminates Gate and Phase Lag
- No insertion loss nor phase drift
- Fast setting tim
- High linearity 50 dBm IIP3
- Low insertion loss 0.65 dB at 3000 MHz , 0.90 dB at 6000 M

High isolation of 29 dB at 3000 MHz , 21 dB at 6000 MHz

- High power 1, B B compressio point $+34 \mathrm{dBm}$
ESD: 500 V HBM
Single-pin $275 \sqrt{ }$ CMOS logic control gic select pin to nange definition of logic control
Reflective sfitch design
- 20-1gd $4 \times 4 \times 0.85 \mathrm{~mm}$ QFN package

Figure 2. Package Type
20 -lead $4 \times 4 \times 0.85 \mathrm{~mm}$ QFN

Parameter	Conditions	Min	Typical	Max	Units
Operation Frequency	\bigcirc	9 kHz		6000	MHz
Insertion Loss	$\begin{aligned} & 9 \mathrm{kHz} \mathrm{NHz} \\ & 3000 \mathrm{Mr} \\ & 6000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.55 \\ & 0.65 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.75 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation - RF1 to RF2	3000 MHz 6000 MHz	28	$\begin{aligned} & 29 \\ & 21 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss RF1, RF2 and RF	$\begin{aligned} & 3000 \mathrm{MHz} \\ & 6000 \mathrm{MHz} \end{aligned}$	14	$\begin{aligned} & 18 \\ & 14 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Switching Time	50% CTRL to 0.1 dB final value		7		$\mu \mathrm{s}$
Input 1 dB Compres	6000 MHz	32	34		dBm
Input IP3 \sim	6000 MHz		+50		dBm

Note: Device lhearity will begin to degrade below 10 MHz .

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
13	RF2	RF2 port. ${ }^{1}$

Table 4. Operating Specifications

Parameter	Min	Typ	Max	Units
V_{DD} Positive Power Supply Voltage	2.5	2.75	3.0	V
$V_{D D}$ Negative Power Supply Voltage	-2.5	-2.75	-3.0	V
IDD Power Supply Current $\left(V_{D D}=3 V, V_{C N T L}=3 V\right)$		20		$\mu \mathrm{A}$
Control Voltage High	$0.7 \mathrm{x} \mathrm{V}_{\text {D }}$			V
Control Voltage Low			0.3 xV VDD	V
$\begin{aligned} & \hline \text { RF Power } \ln 50 \Omega \text { : } \\ & 9 \mathrm{kHz} \leq 4 \mathrm{MHz} \\ & 4 \mathrm{MHz} \leq 6 \mathrm{GHz} \end{aligned}$			$\begin{gathered} \text { Fig. } 4 \\ 31 \end{gathered}$	dBm dBm

Spurious Performance

The typical spurious performance of the PE42551 is -116 dBm when $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$. If further improvement is desired, the internal negative voltage generator can be disabled by externally applying a negative voltage to the V_{SS} pin such that $\mathrm{V}_{\mathrm{SS}}=-\mathrm{V}_{\mathrm{DD}}$.

Table 5. Control Logic Truth Table

LS	CTRL	RFC-RF1	RFC-RF2
0	0	off	on
0	1	on	off
1	0	on	off
1	1	off	on

Logic Select (LS)

The Logic Select feature is used to determine the definition for the CTRL pin.

Switching Frequency The PE42551 has a maximum 25, KRz Switching rate when the interna negative voltage generator is used. In the event a custon er applies $V_{\text {ss }}$ external ($-\mathrm{V}_{\mathrm{DD}}$ to Pin 1 , the Suritching Rate is limited to the Yeciprocal of the Switching Time in Table 1.

Figure 4. Power Handling vs Frequency and Vdd

Evaluation Kit

The SPDT Switch Evaluation Kit board was designed to ease customer evaluation of the PE42551 SPDT switch. The RF common port is connected through a 50Ω transmission line to J 2 . Port 1 and Port 2 are connected through 50Ω transmission lines to J1 and J3. A through transmission line connects SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.
The board is constructed of a two metal layer FR4 material with a total thickness of 0.032 ". The transmission lines were designed using a coplanar waveguide with ground plane (28 mil core, 47.6 mil width, 30 mil gap).

Good RF layout and prudent use of vias is critical for obtaining the specified isolation performance for the device shown in this datasheet.

J6 provides a means for controlling DC and digital inputs to the device. The provided jump short the package pin to ground for logic low When the jumper is removed, the pin is pulled up to $V_{D D}$ for logic high. When the jumper is in place, $3 \mu \mathrm{~A}$ of current will flow through the 1 MR pull resistor. This extra current should not be attributed to the requirements of the deyi

Figure 5. Evaluation Board Layouts
Peregrine Specification 101-0151

Figure 6 Ev luation Board Schematic
eregrine Specification 102-0198

Typical Performance Data

Figure 7. Insertion Loss: RFC-RF1@ $\mathbf{2 5}^{\circ} \mathrm{C}$

Figure 8. Insertion Loss: RFC-RF1@ 2.75V

Figure 10. Insertion $\mathcal{L o s s : ~ R F C - R F 2 ~ @ ~ 2 . 7 5 V ~}$

RFC-RF2, VDD $=2.75 \mathrm{~V}$

Typical Performance Data

Figure 11. Isolation: RFC-RF1@ $\mathbf{5 5}^{\circ} \mathrm{C}$

Typical Performance Data

Figure 15. Return Loss: RF1 @ $25^{\circ} \mathrm{C}$ (RFC-RF1 Active Path)

Figure 16. Return Loss: RF1 @ 2.75V (RFC-RF1 Active Path)

Figure 17. Return Loss: RF2 @ $25^{\circ} \mathrm{C}$ (RFC-RF2 Active Path)

Figure 18. Return Loss: RF2 @ 2.75V (RFC-RF2 Active Path)
RFC-RF2, TEMP $=25 \mathrm{C}$
RFC-RF2, VDD $=2.75 \mathrm{~V}$

Figure 19. Package Drawing
20 -lead $4 \times 4 \times 0.85 \mathrm{~mm}$ QFN
Peregrine Specification 19-0106

Figure 20. Marking Specifications

Figure 21. Tape and Reel Drawing

Table 6. Ordering Information

Sales Contact and Information

For sales and contect information please visit www.psemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-004100-
11930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1
BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2
MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G MASW-008955-TR3000 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS2353-2-SM TGS4304 UPG2162T5N-A CG2415M6-
C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR
MASWSS0181TR-3000 MASW-007588-TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G
MASWSS0202TR-3000

