Product Specification

PE42423

Product Description

The PE42423 is a HaRP™ technology-enhanced absorptive 50Ω SPDT RF switch designed for use in high power and high performance WLAN $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac}$ applications such as carrier and enterprise Wi-Fi Products, supporting bandwidths up to 6 GHz .

This switch features high linearity which remains invariant across the full supply range. PE42423 also features exceptional isolation, high power handling and is offered in a 16-lead $3 x 3 \mathrm{~mm}$ QFN package. In addition, no external blocking capacitors are required if 0 V DC is present on the RF ports.

The PE42423 is manufactured on PSemi's UltraCMOS ${ }^{\circledR}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate.

PSemi's HaRP ${ }^{\text {TM }}$ technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS ${ }^{\circledR}$ process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

UltraCMOS ${ }^{\circledR}$ SPDT RF Switch $100 \mathrm{MHz}-6 \mathrm{GHz}$

Features

- $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac}$ support
- Wide supply range of 2.3 V to 5.5 V
- +1.8 V control logic compatible
- Exceptional isolation
- 47 dB @ 2.4 GHz
- $43 \mathrm{~dB} @ 6.0 \mathrm{GHz}$
- High linearity across supply range
- IIP3 of 65 dBm
- IIP2 of 120 dBm
- High power handling
- 38.5 dBm @ 2.4 GHz
- 37.0 dBm @ 6.0 GHz
- Fast switching time of 500 ns
- ESD performance
- 3 kV HBM on RF pins to GND
- 1.5 kV HBM on all pins
- 1 kV CDM on all pins

Figure 2. Package Type
16-lead 3x3 mm QFN

PE42423

Table 1. Electrical Specifications Temp $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$

Parameter	Path	Condition	Min	Typ	Max	Unit
Operational frequency			0.1		6	GHz
Insertion loss	RFC-RFX	$\begin{aligned} & 0.1-2.4 \mathrm{GHz} \\ & 2.4-5.8 \mathrm{GHz} \\ & 5.8-6.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.80 \\ & 0.95 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	RFX-RFX	$\begin{aligned} & 0.1-2.4 \mathrm{GHz} \\ & 2.4-5.8 \mathrm{GHz} \\ & 5.8-6.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 49 \\ & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 51 \\ & 41 \\ & 41 \end{aligned}$		dB dB dB
Isolation	RFC-RFX	$\begin{aligned} & 0.1-2.4 \mathrm{GHz} \\ & 2.4-5.8 \mathrm{GHz} \\ & 5.8-6.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 44 \\ & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & 47 \\ & 41 \\ & 43 \end{aligned}$		dB $d B$ $d B$
Return loss (common and active port)	RFX	$\begin{aligned} & 0.1-2.4 \mathrm{GHz} \\ & 2.4-5.8 \mathrm{GHz} \\ & 5.8-6.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 19 \\ & 16 \\ & 16 \end{aligned}$		dB $d B$ $d B$
Return loss (terminated port)	RFX	$\begin{aligned} & 0.1-2.4 \mathrm{GHz} \\ & 2.4-5.8 \mathrm{GHz} \\ & 5.8-6.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 23 \\ & 23 \\ & 24 \end{aligned}$		dB dB dB
Input 0.1 dB compression point ${ }^{1}$	RFC-RFX	0.6-4.0 GHz		39.5		dBm
Input IP3 ${ }^{2}$	RFC-RFX	$0.8-2.7 \mathrm{GHz}$		65		dBm
Input IP2 ${ }^{2}$	RFC-RFX	0.8-2.7 GHz		120		dBm
Switching time		50% CTRL to 90% or 10% of final value		500	700	ns

Notes: 1. The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 3 for the operating RF input power (500)
2. The input intercept point remains invariant over the full supply range as defined in Table 3

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
$1,3,4,5$, $6,8,9,10$, 12,13	GND	Ground
2	RF1 1	RF port 1
7	RFC 1	RF common
11	RF2 1	RF port 2
14	CTRL	Digital control logic input
15	LS	Logic Select - used to determine the definition for the CTRL pin (see Table 5)
16	VDD	Supply voltage (nominal 3.3V)
Pad	GND	Exposed pad: ground for proper operation

Note 1: RF pins 2, 7 and 11 must be at OV DC. The RF pins do not require DC blocking capacitors for proper operation if the OV DC requirement is met

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	$V_{\text {DD }}$	2.3		5.5	V
Supply current	I_{DD}		120	200	$\mu \mathrm{A}$
Digital input high (CTRL)	V_{1+}	1.17		3.6	V
Digital input low (CTRL)	$\mathrm{V}_{\text {IL }}$	-0.3		0.6	V
$\begin{gathered} \text { RF input power, CW } \\ 0.1-0.6 \mathrm{GHz} \\ 0.6-4.0 \mathrm{GHz} \\ 4.0-6.0 \mathrm{GHz} \end{gathered}$	$\mathrm{P}_{\text {max,cw }}$			27 Fig. 4 Fig. 4	dBm dBm dBm
$\begin{gathered} \text { RF input power, pulsed }{ }^{1} \\ 0.1-0.6 \mathrm{GHz} \\ 0.6-4.0 \mathrm{GHz} \\ 4.0-6.0 \mathrm{GHz} \end{gathered}$	$\mathrm{P}_{\text {max, pulsed }}$			27 Fig. 4 Fig. 4	dBm dBm dBm
RF input power into terminated ports, CW	$\mathrm{P}_{\text {max,term }}$			22	dBm
Operating temperature range	Top	-40	+25	+125	${ }^{\circ} \mathrm{C}$

Note 1: Pulsed, 5% duty cycle of 4620μ s period, 50]
Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	$\mathrm{V}_{\text {DD }}$	-0.3	5.5	V
Digital input voltage (CTRL)	$\mathrm{V}_{\text {CTRL }}$	-0.3	3.6	V
LS input voltage	$\mathrm{V}_{\text {LS }}$	-0.3	3.6	V
Maximum input power $0.1-0.6 \mathrm{GHz}$ $0.6-4.0 \mathrm{GHz}$ $4.0-6.0 \mathrm{GHz}$	$\mathrm{P}_{\text {MAX,ABS }}$		30	dBm
Storage temperature range	$\mathrm{T}_{\text {ST }}$	-65	+150	${ }^{\circ} \mathrm{C}$
ESD voltage HBM^{1}				
RF pins to All pins	$\mathrm{V}_{\text {ESD,HBM }}$		3000	V
dBm				
ESD voltage MM^{2}, all pins	$\mathrm{V}_{\text {ESD,MM }}$		200	V
ESD voltage CDM^{3}, all pins	$\mathrm{V}_{\text {ESD,CDM }}$		1000	V

Notes: 1. Human Body Model (MIL-STD 883 Method 3015)
2. Machine Model (JEDEC JESD22-A115)
3. Charged Device Model (JEDEC JESD22-C101)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table.
Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\circledR}$ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\circledR}$ devices are immune to latch-up.

Switching Frequency

The PE42423 has a maximum 25 kHz switching rate. Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Table 5. Control Logic Truth Table

LS	CTRL	RFC-RF1	RFC-RF2
0	0	off	on
0	1	on	off
1	0	on	off
1	1	off	on

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42423 in the 16 -lead $3 \times 3 \mathrm{~mm}$ QFN package is MSL3.

Logic Select (LS)

The Logic Select feature is used to determine the definition for the CTRL pin.

Figure 4. Power De-rating Curve for $600 \mathrm{MHz}-6 \mathrm{GHz}$

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 5. Insertion Loss vs. Temp (RFC-RFX)

Figure 7. RFX Port Return Loss vs. Temp

Figure 6. Insertion Loss vs. V_{DD} (RFC-RFX)

Figure 8. RFX Port Return Loss vs. V_{DD}

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 9. Terminated Port Return Loss vs. Temp (RFX Active)

Figure 11. Isolation vs. Temp (RFX-RFX, RFX Active)

Figure 10. Terminated Port Return Loss vs. V_{DD} (RFX Active)

Figure 12. Isolation vs. V_{DD} (RFX-RFX, RFX Active)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 13. Isolation vs. Temp (RFC-RFX, RFX Active)

Figure 14. Isolation vs. V_{DD}
(RFC-RFX, RFX Active)

Evaluation Kit

The SPDT switch evaluation board was designed to ease customer evaluation of PSemi's PE42423. The RF common port is connected through a 50] transmission line via the SMA connector, J1. RF1 and RF2 ports are connected through 500 transmission lines via SMA connectors J 2 and J3, respectively. A 500 through transmission line is available via SMA connectors J5 and J6, which can be used to de-embed the loss of the PCB. J4 provides DC and digital inputs to the device.

For the true performance of the PE42423 to be realized, the PCB should be designed in such a way that RF transmission lines and sensitive DC I/O traces are heavily isolated from one another.

Figure 15. Evaluation Kit Layout

Figure 16. Evaluation Board Schematic

Notes: 1. Use PRT-30186-2 PCB
2. CAUTION: Contains parts and assemblies susceptible to damage by electrostatic discharge (ESD)

Figure 17. Package Drawing 16-lead 3×3 mm QFN

Figure 18. Top Marking Specifications

Figure 19. Tape and Reel Specifications

SECTITN A - A

Notes: 1. 10 sprocket hole pitch cumulative tolerance ± 0.2
Ao $=3.30$
2. Camber in compliance with EIA 481
3. Pocket position relative to sprocket hole measured
$\mathrm{Bo}=3.30$
as true position of pocket, not pocket hole
$K o=1.10$

Table 6. Ordering Information

Order Code	Description	Package	Shipping Method
PE42423B-Z	PE42423 SPDT RF switch	Green 16-lead 3x3 mm QFN	3000 units/T\&R
EK42423-03	PE42423 Evaluation kit	Evaluation kit	$1 / B o x$

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.
pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for psemi manufacturer:
Other Similar products are found below :
EK42430-01 EK42522-02 EK4259-01 EK42822-01 EK43205-01 EK43712-02 EK64907-11 EK64909-11 EK64904-12 EK45140-02
EK42820-02 PE42582A-X PE42524A PE42820B PE42823A PE42542B PE42512A PE42020A PE42522B EK43205-02 EK64904-13
PE426482A-X EK42542-03 EK42442-01 EK43705-11 EK42721-02 EK42641-04 EK42422-01 EK4256-01 EK4250-01 EK42451-01
EK4314-02 EK64102-12 EK43712-03 EK42520-03 EK42521-03 EK423422-01 EK42424-01 EK46120-02 EK42742-03 EK42421-01
EK42359-01 EK42723-01 EK42522-03 4270-00 EK42420-04 4257-00 EK43704-12 EK42426-01 EK46140-01

