Product Specification

PE42441

UltraCMOS ${ }^{\oplus}$ SP4T RF Switch 10 MHz - 8 GHz

Product Description

The PE42441 is a HaRP™ technology-enhanced absorptive SP4T RF switch designed for use in various switching applications spanning multiple markets including wireless infrastructure, broadband, and wireless connectivity.

This switch has four symmetric RF ports and delivers low insertion loss and exceptional isolation. An on-chip CMOS decode logic facilitates a two-pin low voltage CMOS control interface. In addition, no external blocking capacitors are required if 0 VDC is present on RF ports.

The PE42441 is manufactured on Peregrine's UltraCMOS ${ }^{\oplus}$ process, a patented variation of silicon-oninsulator (SOI) technology on a sapphire substrate.

Peregrine's HaRPTM technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS ${ }^{\circledR}$ process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

Table 1. Electrical Specifications @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$, unless otherwise specified

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating frequency			10 MHz		8 GHz	
Insertion loss	RFC-RFX	$\begin{aligned} & 10 \mathrm{MHz}-3000 \mathrm{MHz} \\ & 3000 \mathrm{MHz}-6000 \mathrm{MHz} \\ & 6000 \mathrm{MHz}-7500 \mathrm{MHz} \\ & 7500 \mathrm{MHz}-8000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.3 \\ & 1.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation (active port to terminated port)	RFX-RFX	$\begin{aligned} & 10 \mathrm{MHz}-3000 \mathrm{MHz} \\ & 3000 \mathrm{MHz}-6000 \mathrm{MHz} \\ & 6000 \mathrm{MHz}-7500 \mathrm{MHz} \\ & 7500 \mathrm{MHz}-8000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 40 \\ & 34 \\ & 27 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 39 \\ & 32 \\ & 31 \end{aligned}$		dB dB dB dB
Isolation (common port to active port)	RFC-RFX	$\begin{aligned} & 10 \mathrm{MHz}-3000 \mathrm{MHz} \\ & 3000 \mathrm{MHz}-6000 \mathrm{MHz} \\ & 6000 \mathrm{MHz}-7500 \mathrm{MHz} \\ & 7500 \mathrm{MHz}-8000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 40 \\ & 28 \\ & 24 \\ & 21 \end{aligned}$	$\begin{aligned} & 45 \\ & 33 \\ & 29 \\ & 27 \end{aligned}$		dB dB dB dB
Return loss (common port)	RFX	$\begin{aligned} & 10 \mathrm{MHz}-3000 \mathrm{MHz} \\ & 3000 \mathrm{MHz}-6000 \mathrm{MHz} \\ & 6000 \mathrm{MHz}-7500 \mathrm{MHz} \\ & 7500 \mathrm{MHz}-8000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 23 \\ & 18 \\ & 14 \\ & 13 \end{aligned}$		dB dB dB dB
Return loss (active port)	RFX	$\begin{aligned} & 10 \mathrm{MHz}-3000 \mathrm{MHz} \\ & 3000 \mathrm{MHz}-6000 \mathrm{MHz} \\ & 6000 \mathrm{MHz}-7500 \mathrm{MHz} \\ & 7500 \mathrm{MHz}-8000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 23 \\ & 18 \\ & 17 \\ & 16 \end{aligned}$		dB dB dB dB
Return loss (terminated port)	RFX	$\begin{aligned} & 10 \mathrm{MHz}-3000 \mathrm{MHz} \\ & 3000 \mathrm{MHz}-6000 \mathrm{MHz} \\ & 6000 \mathrm{MHz}-7500 \mathrm{MHz} \\ & 7500 \mathrm{MHz}-8000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 18 \\ & 13 \\ & 11 \\ & 10 \end{aligned}$		dB dB dB dB
Input 0.1 dB compression point ${ }^{1}$	RFC-RFX	$10 \mathrm{MHz}-8000 \mathrm{MHz}$		31		dBm
Input IP3	RFC-RFX	8000 MHz		58		dBm
Input IP2	RFC-RFX	8000 MHz		110		dBm
Switching time		50% CTRL to 90% or 10% RF		5	8	$\mu \mathrm{S}$
Settling time		50% CTRL to 0.05 dB final value (-40 to $+85^{\circ} \mathrm{C}$) rising edge 50% CTRL to 0.05 dB final value (-40 to $+85^{\circ} \mathrm{C}$) falling edge		$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 18 \\ & 45 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

Note 1: The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 3 for the operating RF input power (50Ω)

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
$1,3-6,8$, $9-12,14-17$, $19-22,24-26$, $28,31,32$	GND	Ground
2	RF4 1	RF port
7	RF2 1	RF port
13	RFC 1	RF common
18	RF1 1	RF port
23	RF3 1	RF port
27	VDD 21	Supply voltage
29	V 1	Digital control logic input 1
30	V 2	Digital control logic input 2
Pad	GND	Exposed pad: Ground for proper operation

Note 1: RF pins $2,7,13,18$, and 23 must be at $0 V$ DC. The RF pins do not require DC blocking capacitors for proper operation if the OV DC requirement is met

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{DD}	3.0	3.3	3.55	V
Supply current	I_{DD}		90	160	$\mu \mathrm{~A}$
Digital input high (V1, V2)	V_{IH}	1.2	1.5	$\mathrm{~V}_{\mathrm{DD}}$	V
Digital input low (V1, V2)	V_{IL}	0	0	0.4	V
Digital input current	$\mathrm{I}_{\text {CTRL }}$			1	$\mu \mathrm{~A}$
RF input power, CW $10 \mathrm{MHz}-8 \mathrm{GHz}$	$\mathrm{P}_{\text {MAX,CW }}$			See Fig. 4	dBm
RF input power into terminated ports, CW $10 \mathrm{MHz}-8 \mathrm{GHz}$	$\mathrm{P}_{\text {MAX,TERM }}$			+20	dBm
Operating temperature range	T_{OP}	-40		+85	${ }^{\circ} \mathrm{C}$

Notes: 1.100% duty cycle (-40 to $+85^{\circ} \mathrm{C}, 1: 1$ VSWR)

Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	-0.3	4.0	V
Digital input voltage (V1, V2)	$\mathrm{V}_{\mathrm{CTRL}}$	-0.3	4.0	V
Maximum input power $10 \mathrm{MHz}-8 \mathrm{GHz}$	$\mathrm{P}_{\text {MAX,ABS }}$		See Fig. 4	dBm
Storage temperature range	$\mathrm{T}_{\text {ST }}$	-60	+150	${ }^{\circ} \mathrm{C}$
ESD voltage HBM^{1}, all pins	$\mathrm{V}_{\text {ESD,HBM }}$		2	kV
ESD voltage MM^{2}, all pins	$\mathrm{V}_{\text {ESD,MM }}$		100	V
ESD voltage CDM^{3}, all pins	$\mathrm{V}_{\text {ESD,MM }}$		1	kV

Notes: 1. Human Body Model (MIL-STD 883 Method 3015.7)
2. Machine Model (JEDEC JESD22-A115-A)
3. Charged Device Model (JEDEC JESD22-C101)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\circledR}$ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\circledR}$ devices are immune to latch-up.

Switching Frequency

The PE42441 has a maximum 25 kHz switching rate. Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Table 5. Truth Table

State	V1	V2
RF1 on	0	0
RF2 on	1	0
RF3 on	0	1
RF4 on	1	1

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42441 in the 32 -lead $5 \times 5 \mathrm{~mm}$ LGA package is MSL3.

Spurious Performance

The typical spurious performance of the PE42441 is -144 dBm .

Figure 4. Power De-rating Curve vs Temperature

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 5. Insertion Loss (RFC-RFX)

Figure 6. Insertion Loss vs. Temp (RFC-RFX)

Figure 7. Insertion Loss vs. V_{DD} (RFC-RFX)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, unless otherwise specified

Figure 8. RFC Port Return Loss vs. Temp

Figure 10. Active Port Return Loss vs. Temp

Figure 9. RFC Port Return Loss vs. V_{DD}

Figure 11. Active Port Return Loss vs. V_{DD}

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, unless otherwise specified

Figure 12. Terminated Port Return Loss vs. Temp

Figure 14. Isolation vs. Temp (RFX-RFX)

Figure 13. Terminated Port Return Loss vs. V_{DD}

Figure 15. Isolation vs. V_{DD} (RFX-RFX)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, unless otherwise specified

Figure 16. Isolation vs. Temp (RFC-RFX)

Figure 17. Isolation vs. V_{DD} (RFC-RFX)

Figure 18. Linearity Performance

Evaluation Kit

The SP4T switch EK Board was designed to ease customer evaluation of Peregrine's PE42441. The RF common port is connected through a 50Ω transmission line via the top SMA connector, J1. RF1, RF2, RF3 and RF4 are connected through 50Ω transmission lines via SMA connectors J2, J4, J 3 and J 5 , respectively. A through 50Ω transmission is available via SMA connectors J 6 and J 7 . This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.
The board is constructed of a four metal layer material with a total thickness of 62 mils. The dual clad top RF layer is Rogers RO4003 material with an 8 mil RF core and er $=3.55$. The middle layers provide ground for the transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 15 mils, trace gaps of 10 mils, and metal thickness of 2.1 mils.

Figure 19. Evaluation Board Layouts

PE42441

Figure 20. Evaluation Board Schematic

Figure 21. Package Drawing

Figure 22. Marking Specifications

$$
\begin{aligned}
\bigcirc & =\text { Pin } 1 \text { indicator } \\
Y Y W W & =\text { Date code, last two digits of the year and work week } \\
Z Z Z Z Z Z & =\text { Six digits of the lot number }
\end{aligned}
$$

Figure 23. Tape and Reel Drawing

Section A-A

----------- Tape Feed Direction

Notes: 1. 10 sprocket hole pitch cumulative tolerance ± 0.02

$$
\mathrm{Ao}=5.25 \pm 0.05 \mathrm{~mm}
$$

2. Camber not to exceed 1 mm in 100 mm
3. Material: PS + C
4. Ao and Bo measured as indicated
5. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier
6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

Device Orientation in Tape

Table 6. Ordering Information

Order Code	Description	Package	Shipping Method
PE42441A-Z	PE42441 SP4T RF switch	Green 32-lead 5x5 mm LGA	3000 units / T\&R
PE42441B-Z	PE42441 SP4T RF switch	Green 32-lead 5x5 mm LGA	3000 units / T\&R
EK42441-01	PE42441 Evaluation kit	Evaluation kit	$1 /$ Box
EK42441-02	PE42441 Evaluation kit	Evaluation kit	$1 /$ Box

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

[^0]No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party.
Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following U.S. patents: patents.psemi.com.
Document No. DOC-87416-1 | UltraCMOS ${ }^{\circledR}$ RFIC Solutions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product Product Specification: The datasheet contains final data. In the event Peregrine decides to Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrin
 CNF (Customer Notification Form).
 The information in this document is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

